44 resultados para Souris knockout

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Mutations in the Prominin-1 (Prom1) gene are known to cause retinitis pigmentosa and Stargardt disease, both of which are associated with progressive photoreceptor cell death. There are no effective therapies for either disorder. The aim of this study was to investigate the mechanism of the retinal degeneration in Prom1-deficient mouse models.

METHODS: We constructed Prom1 knockout mice with two distinct genetic backgrounds of C57BL/6 and C57BL/6xCBA/NSlc, and investigated the photoreceptor degeneration by means of histology and functional tests.. In addition, we examined the effect of light on the Prom1(-/-) retina by rearing the mice in the normal light/dark cycle and completely dark conditions. Finally, we investigated if the retinoic-acid derivative Fenretinide slowed the pace of retinal degeneration in these mouse models.

RESULTS: The Prom1(-/-)-knockout mice with both backgrounds developed photoreceptor degeneration after eye opening, but the CB57/BL6-background mice developed photoreceptor cell degeneration much faster than the C57BL/6xCBA/NSlc mice, demonstrating genetic background dependency.. Interestingly, our histologic and functional examination showed that the photoreceptor cell degeneration of Prom1-knockout mice was light-dependent, and was almost completely inhibited when the mutant mice were kept in the dark. The Prom1-knockout retina showed strong downregulation of expression of the visual cycle components, Rdh12 and Abca4. Furthermore, administration of Fenretinide, which lowers the level of the toxic lipofuscin, slowed the degeneration of photoreceptor cells.

CONCLUSIONS: These findings improve our understanding of the mechanism of cell death in Prominin-1-related disease and provide evidence that fenretinide may be worth studying in human disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the Six Nations rugby tournament approaches its half way stage, the usual media chatter on who might win go on to win the championship has been substituted by concern over a number of high profile, concussion-related injuries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suppression of angiogenesis during diabetes is a recognized phenomenon but is less appreciated within the context of diabetic retinopathy. The current study has investigated regulation of retinal angiogenesis by diabetic serum and determined if advanced glycation end products (AGEs) could modulate this response, possibly via AGE-receptor interactions. A novel in vitro model of retinal angiogenesis was developed and the ability of diabetic sera to regulate this process was quantified. AGE-modified serum albumin was prepared according to a range of protocols, and these were also analyzed along with neutralization of the AGE receptors galectin-3 and RAGE. Retinal ischemia and neovascularization were also studied in a murine model of oxygen-induced proliferative retinopathy (OIR) in wild-type and galectin-3 knockout mice (gal3(-/-)) after perfusion of preformed AGEs. Serum from nondiabetic patients showed significantly more angiogenic potential than diabetic serum (P <0.0001) and within the diabetic group, poor glycemic control resulted in more AGEs but less angiogenic potential than tight control (P <0.01). AGE-modified albumin caused a dose-dependent inhibition of angiogenesis (P <0.001), and AGE receptor neutralization significantly reversed the AGE-mediated suppression of angiogenesis (P <0.01). AGE-treated wild-type mice showed a significant increase in inner retinal ischemia and a reduction in neovascularization compared with non-AGE controls (P <0.001). However, ablation of galectin-3 abolished the AGE-mediated increase in retinal ischemia and restored the neovascular response to that seen in controls. The data suggest a significant suppression of angiogenesis by the retinal microvasculature during diabetes and implicate AGEs and AGE-receptor interactions in its causation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cellular prion protein (PrPC) is widely expressed in neural and non-neural tissues, but its function is unknown. Elucidation of the part played by PrPC in adaptive immunity has been a particular conundrum: increased expression of cell surface PrPC has been documented during T-cell activation, yet the functional significance of this activation remains unclear, with conflicting data on the effects of Prnp gene knockout on various parameters of T-cell immunity. We show here that Prnp mRNA is highly inducible within 8–24 h of T-cell activation, with surface protein levels rising from 24 h. When measured in parallel with CD69 and CD25, PrPC is a late activation antigen. Consistent with its up-regulation being a late activation event, PrP deletion did not alter T-cell-antigen presenting cell conjugate formation. Most important, activated PrP0/0 T cells demonstrated much reduced induction of several T helper (Th) 1, Th2, and Th17 cytokines, whereas others, such as TNF- and IL-9, were unaffected. These changes were investigated in the context of an autoimmune model and a bacterial challenge model. In experimental autoimmune encephalomyelitis, PrP-knockout mice showed enhanced disease in the face of reduced IL-17 responses. In a streptococcal sepsis model, this constrained cytokine program was associated with poorer local control of infection, although with reduced bacteremia. The findings indicate that PrPC is a potentially important molecule influencing T-cell activation and effector function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muscarinic acetylcholine receptors (mAChRs) provide viable targets for the treatment of multiple central nervous system disorders. We have used cheminformatics and medicinal chemistry to develop new, highly selective M4 allosteric potentiators. VU10010, the lead compound, potentiates the M4 response to acetylcholine 47-fold while having no activity at other mAChR subtypes. This compound binds to an allosteric site on the receptor and increases affinity for acetylcholine and coupling to G proteins. Whole-cell patch clamp recordings revealed that selective potentiation of M4 with VU10010 increases carbachol-induced depression of transmission at excitatory but not inhibitory synapses in the hippocampus. The effect was not mimicked by an inactive analog of VU10010 and was absent in M4 knockout mice. Selective regulation of excitatory transmission by M4 suggests that targeting of individual mAChR subtypes could be used to differentially regulate specific aspects of mAChR modulation of function in this important forebrain structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miRNA 203 (miR-203), which has previously been shown to play an important role in epithelial cell biology by regulating p63 levels. We investigated how expression of human papillomavirus type 16 (HPV16) oncoproteins E6 and E7 affected miR-203 expression during proliferation and differentiation of HFKs. We demonstrated that miR-203 expression is reduced in HFKs where p53 function is compromised, either by the viral oncoprotein E6 or by knockout of p53 using short hairpin RNAs (p53i). We show that the induction of miR-203 observed during calcium-induced differentiation of HFKs is significantly reduced in HFKs expressing E6 and in p53i HFKs. Induction of miR-203 in response to DNA damage is also reduced in the absence of p53. We report that proliferation of HFKs is dependent on the level of miR-203 expression and that overexpression of miR-203 can reduce overproliferation in E6/E7-expressing and p53i HFKs. In summary, these results indicate that expression of miR-203 is dependent on p53, which may explain how expression of HPV16 E6 can disrupt the balance between proliferation and differentiation, as well as the response to DNA damage, in keratinocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of HeLa cells and serum- and glucocorticoid-regulated kinase 1 (SGK1) knockout mice identified threonine residues in the n-myc downstream-regulated gene 1 protein (NDRG1-Thr(346/356/366)) that are phosphorylated by SGK1 but not by related kinases (Murray et al., Biochem J 385:1-12, 2005). We have, therefore, monitored the phosphorylation of NDRG1-Thr(346/356/366) in order to explore the changes in SGK1 activity associated with the induction and regulation of the glucocorticoid-dependent Na+ conductance (G (Na)) in human airway epithelial cells. Transient expression of active (SGK1-S422D) and inactive (SGK1-K127A) SGK1 mutants confirmed that activating SGK1 stimulates NDRG1-Thr(346/356/366) phosphorylation. Although G (Na) is negligible in hormone-deprived cells, these cells displayed basal SGK1 activity that was sensitive to LY294002, an inhibitor of 3-phosphatidylinositol phosphate kinase (PI3K). Dexamethasone (0.2 mu M) acutely activated SGK1 and the peak of this response (2-3 h) coincided with the induction of G (Na), and both responses were PI3K-dependent. While these data suggest that SGK1 might mediate the rise in G (Na), transient expression of the inactive SGK1-K127A mutant did not affect the hormonal induction of G (Na) but did suppress the activation of SGK1. Dexamethasone-treated cells grown on permeable supports formed confluent epithelial sheets that generated short circuit current due to electrogenic Na+ absorption. Forskolin and insulin both stimulated this current and the response to insulin, but not forskolin, was LY294002-sensitive and associated with the activation of SGK1. While these data suggest that SGK1 is involved in the control of G (Na), its role may be minor, which could explain why sgk1 knockout has different effects upon different tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE. Diabetic patients who also have retinitis pigmentosa (RP) appear to have fewer and less severe retinal microvascular lesions. Diabetic retinopathy may be linked to increased inner retinal hypoxia, with the possibility that this is exacerbated by oxygen usage during the dark-adaptation response. Therefore, patients with RP with depleted rod photoreceptors may encounter proportionately less retinal hypoxia, and, when diabetes is also present, there may be fewer retinopathic lesions. This hypothesis was tested in rhodopsin knockout mice (Rho(-/-)) as an RP model in which the diabetic milieu is superimposed. The study was designed to investigate whether degeneration of the outer retina has any impact on hypoxia, to examine diabetes-related retinal gene expression responses, and to assess lesions of diabetic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Gremlin (grem1) is an antagonist of the bone morphogenetic protein family that plays a key role in limb bud development and kidney formation. There is a growing appreciation that altered grem1 expression may regulate the homeostatic constraints on damage responses in diseases such as diabetic nephropathy. RESEARCH DESIGN AND METHODS: Here we explored whether knockout mice heterozygous for grem1 gene deletion (grem1(+/-)) exhibit protection from the progression of diabetic kidney disease in a streptozotocin-induced model of type 1 diabetes. RESULTS: A marked elevation in grem1 expression was detected in the kidneys and particularly in kidney tubules of diabetic wild-type mice compared with those of littermate controls. In contrast, diabetic grem1(+/-) mice displayed a significant attenuation in grem1 expression at 6 months of diabetes compared with that in age- and sex-matched wild-type controls. Whereas the onset and induction of diabetes were similar between grem1(+/-) and wild-type mice, several indicators of diabetes-associated kidney damage such as increased glomerular basement membrane thickening and microalbuminuria were attenuated in grem1(+/-) mice compared with those in wild-type controls. Markers of renal damage such as fibronectin and connective tissue growth factor were elevated in diabetic wild-type but not in grem1(+/-) kidneys. Levels of pSmad1/5/8 decreased in wild-type but not in grem1(+/-) diabetic kidneys, suggesting that bone morphogenetic protein signaling may be maintained in the absence of grem1. CONCLUSIONS: These data identify grem1 as a potential modifier of renal injury in the context of diabetic kidney disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct pharmacological targeting of the anti-apoptotic B-cell lymphoma-2 (BCL-2) family is an attractive therapeutic strategy for treating cancer. Obatoclax is a pan-BCL-2 family inhibitor currently in clinical development. Here we show that, although obatoclax can induce mitochondrial apoptosis dependent on BCL-2 associated x protein/BCL-2 antagonist killer (BAX/BAK) consistent with its on-target pharmacodynamics, simultaneous silencing of both BAX and BAK did not abolish acute toxicity or loss of clonogenicity. This is despite complete inhibition of apoptosis. Obatoclax dramatically reduced viability without inducing loss of plasma membrane integrity. This was associated with rapid processing of light chain-3 (LC3) and reduction of S6 kinase phosphorylation, consistent with autophagy. Dramatic ultrastructural vacuolation, not typical of autophagy, was also induced. Silencing of beclin-1 failed to prevent LC3 processing, whereas knockout of autophagy-related (Atg) 7 abolished LC3 processing but failed to prevent obatoclax-induced loss of clonogenicity or ultrastructural changes. siRNA silencing of Atg7 in BAX/BAK knockout mouse embryonic fibroblasts did not prevent obatoclax-induced loss of viability. Cells selected for obatoclax resistance evaded apoptosis independent of changes in BCL-2 family expression and displayed reduced LC3 processing. In summary, obatoclax exhibits BAX- and BAK-dependent and -independent mechanisms of toxicity and activation of autophagy. Mechanisms other than autophagy and apoptosis are blocked in obatoclax resistant cells and contribute significantly to obatoclax's anticancer efficacy. Cell Death and Disease (2010) 1, e108; doi:10.1038/cddis.2010.86; published online 16 December 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND:
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) regulation of the Rho-like GTPase Cdc42 has a central role in epithelial polarised growth, but effects of this molecular network on apoptosis remain unclear.

METHODS:
To investigate the role of Cdc42 in PTEN-dependent cell death, we used flow cytometry, in vitro pull-down assays, poly(ADP ribose) polymerase (PARP) cleavage and other immunoblots in isogenic PTEN-expressing and -deficient colorectal cells (HCT116PTEN(+/+), HCT116PTEN(-/-), Caco2 and Caco2 ShPTEN cells) after transfection or treatment strategies.

RESULTS:
The PTEN knockout or suppression by short hairpin RNA or small interfering RNA (siRNA) inhibited Cdc42 activity, PARP cleavage and/or apoptosis in flow cytometry assays. Transfection of cells with wild-type or constitutively active Cdc42 enhanced PARP cleavage, whereas siRNA silencing of Cdc42 inhibited PARP cleavage and/or apoptosis. Pharmacological upregulation of PTEN by sodium butyrate (NaBt) treatment enhanced Cdc42 activity, PARP cleavage and apoptosis, whereas Cdc42 siRNA suppressed NaBt-induced PARP cleavage. Cdc42-dependent signals can suppress glycogen synthase kinase-ß (GSK3ß) activity. Pharmacological inhibition of GSK3ß by lithium chloride treatment mimicked effects of Cdc42 in promotion of PARP cleavage and/or apoptosis.

CONCLUSION:
Phosphatase and tensin homologue deleted on chromosome 10 may influence apoptosis in colorectal epithelium through Cdc42 signalling, thus providing a regulatory framework for both polarised growth and programmed cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The p63 transcription factor (TP63) is critical in development, growth and differentiation of stratifying epithelia. This is highlighted by the severity of congenital abnormalities caused by TP63 mutations in humans, the dramatic phenotypes in knockout mice and de-regulation of TP63 expression in neoplasia altering the tumour suppressive roles of the TP53 family. In order to define the normal role played by TP63 and provide the basis for better understanding how this network is perturbed in disease, we used chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq) to identify >7500 high-confidence TP63-binding regions across the entire genome, in primary human neonatal foreskin keratinocytes (HFKs). Using integrative strategies, we demonstrate that only a subset of these sites are bound by TP53 in response to DNA damage. We identify a role for TP63 in transcriptional regulation of multiple genes genetically linked to cleft palate and identify AP-2alpha (TFAP2A) as a co-regulator of a subset of these genes. We further demonstrate that AP-2gamma (TFAP2C) can bind a subset of these regions and that acute depletion of either TFAP2A or TFAP2C alone is sufficient to reduce terminal differentiation of organotypic epidermal skin equivalents, indicating overlapping physiological functions with TP63.