4 resultados para Solvothermal

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel nucleoside analogues containing photoswitchable moieties were prepared using 'click' cycloaddition reactions between 5 '-azido-5 '-deoxythymidine and mono- or bis-N-propargylamide-substituted azobenzenes. In solution, high to quantitative yields were achieved using 5mol% Cu(I) in the presence of a stabilizing ligand. 'Click' reactions using the monopropargylamides were also effected in the absence of added cuprous salts by the application of liquid assisted grinding (LAG) in metallic copper reaction vials. Specifically, high speed vibration ball milling (HSVBM) using a 3/32('') (2.38mm) diameter copper ball (62mg) at 60Hz overnight in the presence of ethyl acetate lead to complete consumption of the 5 '-azido nucleoside with clean conversion to the corresponding 1,3-triazole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are now more than 1200 papers a year describing research results using the 'neoteric' solvents, known as ionic liquids (ILs). If ILs are such highly studied solvents, why has there been so comparatively little research in their use in crystallization? Here we explore this question and discuss possible strategies for utilization of the mundane and the unique aspects of ILs for novel crystallization strategies including crystallization of high and low melting solids using thermal shifts; ''solvothermal'' techniques; slow diffusion; electrocrystallization; and use of a co-solvent. The results presented here and those appearing in the literature indicate both the complex nature of these solvents and their promise in delivering unique solvation, metal ion coordination numbers, coordination polymer motifs, and metal-anion interactions, to name but a few. These complex, but fascinating, results and the promise of much more intimate control over crystallization processes will drive a growing interest in using ILs as crystallization solvents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metal-organic framework [Co(INA)(2)].0.5EtOH (INA = isonicotinate, NC5H4-4-CO2-), 1 was synthesised under solvothermal conditions. Its X-ray crystal structure shows channels containing ethanol guests which are hydrogen-bonded to carboxylate oxygens of the framework. The pyridyl rings of the framework alternate between `open' and `closed' positions along the channels resulting in large variation in the channel cross-sectional area from ca. 1.4 by 2.3 at the narrowest point to 4.9 by 5.3 at the widest. Despite the very small windows, the ethanol guests (of van der Waals diameter ca. 4.2-6.1 Angstrom) may be reversibly desorbed and sorbed into the structure quantitatively, as shown by in situ variable-temperture IR spectroscopy and XRPD. The single-crystal structure of the desolvated form [Co(INA)(2)]2 shows that there is no change in the overall connectivity on desolvation, but the rotational positions of the pyridine rings are altered. This suggests that pyridyl rotation may occur to allow guests to pass in and out. When the synthesis was conducted in 1-propanol solvent [Co(INA)(2)].0.5Pr(n)OH.H2O 3, was obtained, and a single-crystal X-ray structure revealed the same overall connectivity as in 1 but with pyridine rings disordered over closed and open positions. There was no evidence of included guests from X-ray crystallography, suggesting that they are also highly disordered. Variable-temperature XRPD performed on bulk samples showed peaks which were unsymmetrical and exhibited shoulders, suggesting that for each pattern obtained the material actually consisted of several closely-related phases. The movements of the peaks during desolvation showed the presence of intermediate phases before the final desolvated product was formed. The peak positions of the intermediate phases matched more closely with the calculated pattern for 3 than with 1 or 2, suggesting that they may have disordered structures similar to 3. The results also suggest that the intermediate phase represents an initial increase in volume before a larger decrease in volume occurs to give the final desolvated material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc selenide nanospheres were prepared from a diphenyl diselenide precursor and a range of chloro- and bromozincate(II) ionic liquids via a microwave-assisted ionothermal route; this is the first report on the use of microwave irradiation in combination with ionic liquids to prepare this material. The method is a time-efficient and a facile one-pot reaction to produce zinc(II) selenide nanomaterials. The product formation in the ionic liquids has been monitored using Raman spectroscopy. The products have been characterised using PXRD, SEM, EDX, photoluminescence and UV-VIS spectroscopy. Advantages of this new route, such as ease of solubilisation of all reactants into one phase at high concentration, the negligible vapour pressure irrespective of the reaction temperature, very fast reaction times, ease of potential scale-up and reproducibility are discussed.