54 resultados para Solid-liquid interfaces

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-equilibrium conditions at which the interfacial free energy is ill defined. Here we draw a connection between the atomistic description of a diffuse solid-liquid interface and its thermodynamic characterization. This framework resolves the ambiguities in defining the solid-liquid interfacial free energy above and below the melting temperature. In addition, we introduce a simulation protocol that allows solid-liquid interfaces to be reversibly created and destroyed at conditions relevant for experiments. We directly evaluate the value of the interfacial free energy away from the melting point for a simple but realistic atomic potential, and find a more complex temperature dependence than the constant positive slope that has been generally assumed based on phenomenological considerations and that has been used to interpret experiments. This methodology could be easily extended to the study of other phase transitions, from condensation to precipitation. Our analysis can help reconcile the textbook picture of classical nucleation theory with the growing body of atomistic studies and mesoscale models of solidification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of a room temperature molten salt to an external electric field when it is confined to a nanoslit is studied by molecular dynamics simulations. The fluid is confined between two parallel and oppositely charged walls, emulating two electrified solid-liquid interfaces. Attention is focused on structural, electrostatic, and dynamical properties, which are compared with those of the nonpolarized fluid. It is found that the relaxation of the electrostatic potential, after switching the electric field off, occurs in two stages. A first, subpicosecond process accounts for 80% of the decay and is followed by a second subdiffusive process with a time constant of 8 ps. Diffusion is not involved in the relaxation, which is mostly driven by small anion translations. The relaxation of the polarization in the confined system is discussed in terms of the spectrum of charge density fluctuations in the bulk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have resolved the solid-liquid phase transition of carbon at pressures around 150GPa. High-pressure samples of different temperatures were created by laser-driven shock compression of graphite and varying the initial density from 1.30g/cm3 to 2.25g/cm3. In this way, temperatures from 5700K to 14,500K could be achieved for relatively constant pressure according to hydrodynamic simulations. From measuring the elastic X-ray scattering intensity of vanadium K-alpha radiation at 4.95keVat a scattering angle of 126°, which is very sensitive to the solid-liquid transition, we can determine whether the sample had transitioned to the fluid phase. We find that samples of initial density 1.3g/cm3 and 1.85g/cm3 are liquid in the compressed states, whereas samples close to the ideal graphite crystal density of 2.25g/cm3 remain solid, probably in a diamond-like state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chitins produced via a conventional chemical route as well as from a new biological process were modified to increase the efficiency of enzymatic deacetylation reactions for the production of novel biological chitosan. These modified chitins were reacted for 24h with extracellular fungal enzymes from Colletotrichum lindemuthianum. The chemical and physical properties of the various substrates were analysed and their properties related to the effectiveness in the deacetylation reaction. Modifications of the chitins affected the degree of deacetylation with varied effects. Without further modification to reduce crystallinity and to open up the solid substrate structure, the chitins were found to be poor substrates for the heterogeneous solid-liquid enzymatic catalysis. It was found that the solvent and drying method used in modifying the chitins had significant impact on the final efficiency of the enzymatic deacetylation reaction. The most successful modifications through freeze drying of a colloidal chitin suspension increased the degree of enzymatic deacetylation by 20 fold. These processes reduce the crystallinity of the chitin making it easier for the enzymes to access their internal structure. X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and BET isotherm analysis are employed to characterise the modified chitins to ascertain the degree of crystallinity, porous structure, surface area, and morphology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the combined studies of density functional theory (DFT) calculations and electrochemical in situ FTIR spectroscopy on surface oxidants and mechanisms of CO oxidation at the Ru(0001) electrodes. It is shown that CO can co-adsorb with both O and OH species at lower potential region where a low coverage of the (2 x 2)-O/OH adlayer formed; the oxidation of CO adsorbates takes place at higher potentials where a high coverage of the (1 x 1)-O/OH adlayer formed. Surface O species are not the active oxidants under all coverages studied, due to the high reaction barriers between CO and O (>1 eV). However, surface OH species with higher coverage are identified as the active oxidants, and CO oxidation takes place via a two-steps' mechanism of CO + 3OH -> COOH + 2OH -> CO2 + H2O + OH, in which three nearby OH species are involved in the CO2 formation: CO reacts with OH, forming COOH; COOH then transfers the H to a nearby OH to form H2O and CO2, at the same time, another H in the H2O transfers to a nearby OH to form a weak adsorbed H2O and a new OH. The reaction barrier of these processes is reduced significantly to around 0.50 eV. These new results not only provide an insight into surface active oxidants on Ru, which is directly relevant to fuel cell catalysis, but also reveals the extra complexity of catalytic reactions taking place at solid/liquid electrochemical interface in comparison to the relatively simpler ones at solid/gas phase. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chemisorption and reactivity of SO2 on Pt{111} have been studied by HREELS, XPS, NEXAFS and temperature-programmed desorption. At 160 K SO2 adsorbs intact at high coverages, with eta(2) S-O coordination to the surface. On annealing to 270 K, NEXAFS indicates the SO2 molecular plane essentially perpendicular to the surface. Preadsorbed O-a reacts with SO2 to yield adsorbed SO4, identified as the key surface species responsible for SO2-promoted catalytic alkane oxidation. Coadsorbed CO or propene efficiently reduce SO2 overlayers to deposit S-a, and the implications of this for catalytic systems are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the help of in situ multi-step FTIR Spectroscopy, two types of adsorbed geminal CO have been observed for the first time at an electrochemically modified Rh electrode. A doublet band of two broad peaks at 2166 and 2112cm is assigned to geminal CO on Rh surface oxide (or hydroxide) produced by the electrochemical modification process, and a doublet band of two peaks near 2103 and 2033cm is ascribed to geminal CO on surface clusters of Rh formed by reduction of Rh surface oxide. Based on the evolution of FTIR spectra with the electrode potential, the surface processes of a Rh electrode, subjected to a potential cycling treatment at 1.5Vs between -0.275 and 2.4V for 2min, have been elucidated. The present results at the solid/liquid electrochemical interface were compared with those obtained at the solid/gas interface, and consistent conclusions were achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lignocellulosic biomass pretreatment and the subsequent thermal conversion processes to produce solid, liquid, and gas biofuels are attractive solutions for today's energy challenges. The structural study of the main components in biomass and their macromolecular complexes is an active and ongoing research topic worldwide. The interactions among the three main components, cellulose, hemicellulose, and lignin, are studied in this paper using electronic structure methods, and the study includes examining the hydrogen bond network of cellulose-hemicellulose systems and the covalent bond linkages of hemicellulose-lignin systems. Several methods (semiempirical, Hartree-Fock, and density functional theory) using different basis sets were evaluated. It was shown that theoretical calculations can be used to simulate small model structures representing wood components. By comparing calculation results with experimental data, it was concluded that B3LYP/6-31G is the most suitable basis set to describe the hydrogen bond system and B3LYP/6-31G(d,p) is the most suitable basis set to describe the covalent system of woody biomass. The choice of unit model has a much larger effect on hydrogen bonding within cellulose-hemicellulose system, whereas the model choice has a minimal effect on the covalent linkage in the hemicellulose-lignin system. © 2011 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability of spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bioenergy derived from biomass provides a promising energy alternative and can reduce the greenhouse gas (GHG) emissions generated from fossil fuels. Biomass-based thermochemical conversion technologies have been acknowledged as apt options to convert bioresources into bioenergy; this bioenergy includes electricity, heat, and fuels/chemicals in solid, liquid, and gaseous phases. In this review, the techno-economic and life cycle assessment of these technologies (combustion, gasification, pyrolysis, liquefaction, carbonization, and co-firing) are summarized. Specific indicators (production costs in a techno-economic analysis, functional units and environmental impacts in a life cycle analysis) for different technologies were compared. Finally, gaps in research and future trends in biomass thermochemical conversion were identified. This review could be used to guide future research related to economic and environmental benefits of bioenergy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article describes the development of the first ion pair solid phase extraction technique (IPSPE), which has been applied to the extraction of metformin from plasma samples. In addition an ion pair chromatographic method was developed for the specific HPLC determination of metformin. Several extraction and HPLC methods have been described previously for metformin, however, most of them did not solve the problems associated with the high polarity of this drug. Drug recovery in the developed method was found to be more than 98%. The limit of detection and limit of quantification was 3 and 5 ng/ml, respectively. The intraday and interday precision (measured by coefficient of variation, CV%) was always less than 9%. The accuracy (measured by relative error, R.E.%) was always less than 6.9%. Stability analysis showed that metformin is stable for at least 3 months when stored at -70degreesC. The method has been applied to 150 patient samples as part of a medication adherence study. (C) 2003 Elsevier B.V. All rights reserved.