23 resultados para Solar energy.

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dye-sensitized solar cells have attracted intense research attention owing to their ease of fabrication, cost-effectiveness and high efficiency in converting solar energy. Noble platinum is generally used as catalytic counter electrode for redox mediators in electrolyte solution. Unfortunately, platinum is expensive and non-sustainable for long-term applications. Therefore, researchers are facing with the challenge of developing low-cost and earth-abundant alternatives. So far, rational screening of non-platinum counter electrodes has been hamstrung by the lack of understanding about the electrocatalytic process of redox mediators on various counter electrodes. Here, using first-principle quantum chemical calculations, we studied the electrocatalytic process of redox mediators and predicted electrocatalytic activity of potential semiconductor counter electrodes. On the basis of theoretical predictions, we successfully used rust (alpha-Fe2O3) as a new counter electrode catalyst, which demonstrates promising electrocatalytic activity towards triiodide reduction at a rate comparable to platinum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A low cost solar collector was developed by using polymeric components as opposed to metal and glass components of traditional solar collectors. In order to utilize polymers for the absorber of the solar collector, Carbon Nanotubes (CNT) has been added as a filler to improve the thermal conductivity and the solar absorptivity of polymers. The solar collector was designed as a multi-layer construction with considering the economic manufacturing. Through the mathematical heat transfer analysis, the performance and characteristics of the designed solar collector have been estimated. Furthermore, the prototypes of the proposed system were built and tested at a state-of-the-art solar simulator facility to evaluate the actual performance of the developed solar collector. The cost-effective polymer-CNT solar collector, which achieved efficiency as much as that of a conventional glazed flat plate solar panel, has been successfully developed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a hierarchical energy management system for multi-source multi-product (MSMP) microgrids. Traditional energy hub based scheduling method is combined with a hierarchical control structure to incorporate transient characteristics of natural gas flow and dynamics of energy converters in microgrids. The hierarchical EMS includes a supervisory control layer, an optimizing control layer, and an execution control layer. In order to efficiently accommodate the systems multi time-scale characteristics, the optimizing control layer is decomposed into three sub-layers: slow, medium and fast. Thermal, gas and electrical management systems are integrated into the slow, medium, and fast control layer, respectively. Compared with wind energy, solar energy is easier to integrate and more suitable for the microgrid environment, therefore, potential impacts of the hierarchical EMS on MSMP microgrids is investigated based on a building energy system integrating photovoltaic and microturbines. Numerical studies indicate that by using a hierarchical EMS, MSMP microgrids can be economically operated. Also, interactions among thermal, gas, and electrical system can be effectively managed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An automated solar reactor system was designed and built to carry out catalytic pyrolysis of scrap rubber tires at 550°C. To maximize solar energy concentration, a two degrees-of-freedom automated sun tracking system was developed and implemented. Both the azimuth and zenith angles were controlled via feedback from six photo-resistors positioned on a Fresnel lens. The pyrolysis of rubber tires was tested with the presence of two types of acidic catalysts, H-beta and H-USY. Additionally, a photoactive TiO<inf>2</inf> catalyst was used and the products were compared in terms of gas yields and composition. The catalysts were characterized by BET analysis and the pyrolysis gases and liquids were analyzed using GC-MS. The oil and gas yields were relatively high with the highest gas yield reaching 32.8% with H-beta catalyst while TiO<inf>2</inf> gave the same results as thermal pyrolysis without any catalyst. In the presence of zeolites, the dominant gasoline-like components in the gas were propene and cyclobutene. The TiO<inf>2</inf> and non-catalytic experiments produced a gas containing gasoline-like products of mainly isoprene (76.4% and 88.4% respectively). As for the liquids they were composed of numerous components spread over a wide distribution of C<inf>10</inf> to C<inf>29</inf> hydrocarbons of naphthalene and cyclohexane/ene derivatives.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper explores the potential for façade located solar thermal collectors. Building typologies with limited roof space area are highlighted. A relationship exists between hot water consumption and the solar collector area; hence, a literature review of the hot water consumption of different building typologies is conducted. The review showed that there is a paucity of information on the hot water consumption of buildings, primarily attributed to the difficulty in quantifying it. The hot water consumption is typically describedusing liters per capita per day (Lcd) units, with a broad range of values existing, dependent, primarily on the building's function and location. Asimulation-based study is conducted to size solar thermal systems for different buildings and their associated hot water loads. High solar fractions,for buildings with high levels of hot water consumption, could only be achievedby using significantly largercollector surface areas. As a result, façade located solar thermal collectors are required for certain high-rise buildings that aim to provide for their hot water needs using a considerable portion of solar energy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A low cost flat plate solar collector was developed by using polymeric components as opposed to metal and glass components of traditional flat plate solar collectors. In order to improve the thermal and optical properties of the polymer absorber of the solar collector, Carbon Nanotubes (CNT) were added as a filler. The solar collector was designed as a multi-layer construction with an emphasis on low manufacturing costs. Through the mathematical heat transfer analysis, the thermal performance of the collector and the characteristics of the design parameters were analyzed. Furthermore, the prototypes of the proposed collector were built and tested at a state-of-the-art solar simulator facility to evaluate its actual performance. The inclusion of CNT improved significantly the properties of the polymer absorber. The key design parameters and their effects on the thermal performance were identified via the heat transfer analysis. Based on the experimental and analytical results, the cost-effective polymer-CNT solar collector, which achieved a high thermal efficiency similar to that of a conventional glazed flat plate solar panel, was successfully developed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dye-sensitized solar cell (DSSC) is currently a promising technology that makes solar energy efficient and cost-effective to harness. In DSSC, metal free dyes, such indoline-containing D149 and D205, are proved to be potential alternatives for traditional metal organic dyes. In this work, a DFT/TDDFT characterization for D149 and D205 were carried out using different functionals, including B3LYP, MPW1K, CAM-B3LYP and PBE0. Three different conformers for D149 and four different conformers for D205 were identified and calculated in vacuum. The performance of different functionals on calculating the maximum absorbance of the dyes in vacuum and five common solvents (acetonitrile, chloroform, ethanol, methanol, and THF) were examined and compared to determine the suitable computational setting for predicting properties of these two dyes. Furthermore, deprotonated D149 and D205 in solvents were also considered, and the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated, which elucidates the substitution effect on the rhodanine ring of D149 and D205 dyes on their efficiency. Finally, D149 and D205 molecules were confirmed to be firmly anchored on ZnO surface by periodic DFT calculations. These results would shed light on the design of new highly efficiency metal-free dyes.