44 resultados para Solar Thermal energy

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

EU targets require nearly zero energy buildings (NZEB) by 2020. However few monitored examples exist of how NZEB has been achieved in practise in individual residential buildings. This paper provides an example of how a low-energy building (built in 2006), has achieved nearly zero energy heating through the addition of a solar domestic hot water and space heating system (“combi system”) with a Seasonal Thermal Energy Store (STES). The paper also presents a cumulative life cycle energy and cumulative life cycle carbon analysis for the installation based on the recorded DHW and space heating demand in addition to energy payback periods and net energy ratios. In addition, the carbon and energy analysis is carried out for four other heating system scenarios including hybrid solar thermal/PV systems in order to obtain the optimal system from a carbon efficiency perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the potential for façade located solar thermal collectors. Building typologies with limited roof space area are highlighted. A relationship exists between hot water consumption and the solar collector area; hence, a literature review of the hot water consumption of different building typologies is conducted. The review showed that there is a paucity of information on the hot water consumption of buildings, primarily attributed to the difficulty in quantifying it. The hot water consumption is typically describedusing liters per capita per day (Lcd) units, with a broad range of values existing, dependent, primarily on the building's function and location. Asimulation-based study is conducted to size solar thermal systems for different buildings and their associated hot water loads. High solar fractions,for buildings with high levels of hot water consumption, could only be achievedby using significantly largercollector surface areas. As a result, façade located solar thermal collectors are required for certain high-rise buildings that aim to provide for their hot water needs using a considerable portion of solar energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar heating systems have the potential to be an efficient renewable energy technology, provided they are sized correctly. Sizing a solar thermal system for domestic applications does not warrant the cost of a simulation. As a result simplified sizing procedures are required. The size of a system depends on a number of variables including the efficiency of the collector itself, the hot water demand and the solar radiation at a given location. Domestic Hot Water (DHW) demand varies with time and is assessed using a multi-parameter detailed model. Secondly, the national energy evaluation methodologies are evaluated from the perspective of solar thermal system sizing. Based on the assessment of the standards, limitations in the evaluation method for solar thermal systems are outlined and an adapted method, specific to the sizing of solar thermal systems, is proposed. The methodology is presented for two common dwelling scenarios. Results from this showed that it is difficult to achieve a high solar fraction given practical sizes of system infrastructure (storage tanks) for standard domestic properties. However, solar thermal systems can significantly offset energy loads due associated DHW consumption, particularly when sized appropriately. The presented methodology is valuable for simple solar system design and also for the quick comparison of salient criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harnessing solar energy to provide for the thermal needs of buildings is one of the most promising solutions to the global energy issue. Exploiting the additional surface area provided by the building’s façade can significantly increase the solar energy output. Developing a range of integrated and adaptable products that do not significantly affect the building’s aesthetics is vital to enabling the building integrated solar thermal market to expand and prosper. This work reviews and evaluates solar thermal facades in terms of the standard collector type, which they are based on, and their component make-up. Daily efficiency models are presented, based on a combination of the Hottel Whillier Bliss model and finite element simulation. Novel and market available solar thermal systems are also reviewed and evaluated using standard evaluation methods, based on experimentally determined parameters ISO 9806. Solar thermal collectors integrated directly into the facade benefit from the additional wall insulation at the back; displaying higher efficiencies then an identical collector offset from the facade. Unglazed solar thermal facades with high capacitance absorbers (e.g. concrete) experience a shift in peak maximum energy yield and display a lower sensitivity to ambient conditions than the traditional metallic based unglazed collectors. Glazed solar thermal facades, used for high temperature applications (domestic hot water), result in overheating of the building’s interior which can be reduced significantly through the inclusion of high quality wall insulation. For low temperature applications (preheating systems), the cheaper unglazed systems offer the most economic solution. The inclusion of brighter colour for the glazing and darker colour for the absorber shows the lowest efficiency reductions (<4%). Novel solar thermal façade solutions include solar collectors integrated into balcony rails, shading devices, louvers, windows or gutters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughout Earth's history there have been temporal and spatial variations in the amount of visible and ultraviolet radiation received by ecosystems. This paper examines if temporal changes in these forms of energy receipt could have influenced the tempo and mode of plant diversity and speciation, focusing in particular upon Cenozoic time-scales. Evidence for changing patterns of plant diversity and speciation apparent in various fossil records and molecular phylogenies are considered alongside calculated changes in thermal and solar ultraviolet energy (specifically UV-B) over the past 50 Myr. We suggest that changes in thermal energy influx (amount and variability) affected the tempo of evolution through its influence upon community dynamics (e.g. population size, diversity, turnover, extinctions). It was not only the amount of thermal energy but also variability in its flux that may have influenced these processes, and ultimately the rate of diversification. We suggest that variations in UV-B would have influenced the mode and tempo of speciation through changes to genome stability during intervals of elevated UV-B. We argue, therefore, that although variability in thermal energy and UV-B fluxes through time may lead to the same end-point (changing the rate of diversification), the processes responsible are very different and both need to be considered when linking evolutionary processes to energy flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun's quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power system of the future will have a hierarchical structure created by layers of system control from via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the concept of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called ‘back-up generation’ needed to support an 80% renewable energy portfolio in Europe by 2050.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concrete solar collectors offer a type of solar collector with structural, aesthetic and economic advantages over current populartechnologies. This study examines the influential parameters of concrete solar collectors. In addition to the external conditions,the performance of a concrete solar collector is influenced by the thermal properties of the concrete matrix, piping network andfluid. Geometric and fluid flow parameters also influence the performance of the concrete solar collector. A literature review ofconcrete solar collectors is conducted in order to define the benchmark parameters from which individual parameters are thencompared. The numerical model consists of a 1D pipe flow network coupled with the heat transfer in a 3D concrete domain. Thispaper is concerned with the physical parameters that define the concrete solar collector, thus a constant surface temperature isused as the exposed surface boundary condition with all other surfaces being insulated. Results show that, of the parametersinvestigated, the pipe spacing, ps, concrete conductivity, kc, and the pipe embedment depth, demb, are among those parameterswhich have greatest effect on the collector’s performance. The optimum balance between these parameters is presented withrespect to the thermal performance and discussed with reference to practical development issues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ionic liquids generally have wide liquid ranges and negligible vapour pressures; attractive characteristics for use as media for heat transfer and short heat term storage systems. This review of the limited literature available shows that many common ionic liquids have heat capacities, and thus potential thermal energy storage capabilities, that surpass those of commercial hot-oil and synthetic heat transfer fluids and suggests that there is a role for ionic liquids as novel thermal fluids.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dubai, the second largest city of the United Arab Emirates, is a fast growing hub with increasing need for infrastructure, housing and public facilities. Dubai is trying to market itself as an attractive holiday destination, which saw the launching and building of large scale planned communities, some of which are located on reclaimed land along the city's coast line. This paper reviews Dubai\'s green building agenda by examining the scale and typologies of new and planned low carbon projects, and discusses the potential of renewable sources of energy that can reduce the country's dependence on fossil fuels and improve the country's long term sustainability. It assesses the potential of solar energy, wind power, and geo-thermal energy in Dubai and the UAE in general.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This project involves the construction of a dwelling in the outskirts of Dublin City. Situated in a disused quarry, the house act as an inhabited bridge, spanning between natural and man made outcrops, service structures and a shared entrance staircase. The houses language derives from the structure necessary to achieve these spans.
The section internally is modeled to present a variety of scales of spaces. More intimate living spaces and bedrooms occur in a lower, north-facing wing. Taller living spaces address the south.

Incorporating rainwater harvesting, wood-gasifying boilers, on site wind powered electrical generation, solar thermal panels and very high levels of insulation the houses are close to energy neutral. The fact that the house is constructed in massive timber construction means that 250 tonnes of carbon are sequestered in its construction. The design includes a 25yar replanting strategy to replace the existing coniferous-forested surrounds with native species in a coppiced planting strategy to allow ongoing fuel for the house, and cash crops to be sold on.

Located in an area of outstanding natural beauty the planning and design of the house involved research into patterns of rural development, the relationship between man made interventions and the natural landscape and the technology of the vernacular. This latter research forms part of the themes being explored under the Kevin Kieran Arts Council / OPW Bursary

Aims / Objectives Questions

1 To design and construct a low energy place to dwell.
2 To investigate the relationship between man-made interventions and new construction in an area of outstanding natural beauty.
3 To derive a language of construction that is contemporary in nature but refers to precedents embedded in the vernacular.
4 To develop a low-carbon form of construction that allows the construction of the house to act to sequester carbon
5 To make a contemporary addition in sympathy with the qualities of the existing site

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The future European power system will have a hierarchical structure created by layers of system control from a Supergrid via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the context of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called 'back-up generation' needed to support an 80% renewable energy portfolio in Europe by 2050. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC), temperature programmed desorption mass spectrometry (TPD-MS) and small angle neutron scattering (SANS) were used to investigate CO2 uptake by the Wyodak coal. The adsorption of carbon dioxide on Wyodak coal was studied by DSC. The exotherms evident at low temperatures are associated with the uptake of CO2 suggesting that carbon dioxide interacts strongly with the coal surface. The reduction in the value of the exotherms between the first and second runs for the Wyodak coal suggests that some CO2 is irreversibly bound to the structure even after heating to 200 °C DSC results also showed that adsorption of CO2 on the coal surface is an activated process and presumably at the temperature of the exotherms there is enough thermal energy to overcome the activation energy for adsorption. The adsorption process is instantly pursued by much slower diffusion of the gas molecules into the coal matrix (absorption). Structural rearrangement in coal by CO2 is examined by change in the glass transition temperature of coal after CO2 uptake at different pressures. The amount of gas dissolved in the coal increases with increasing CO2 pressure. TPD-MS showed that CO2 desorption from the Wyodak coal follows a first order kinetic model. Increase in the activation energy for desorption with pre-adsorbed CO2 pressure suggests that higher pressures facilitate the transport of CO2 molecules through the barriers therefore the amount of CO2 uptake by the coal is greater at higher pressures and more attempts are required to desorb CO2 molecules sorbed at elevated pressures. These conclusions were further confirmed by examining the Wyodak coal structure in high pressure CO 2 by SANS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report observations of the dwarf star e Eri (K2V) made with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. The high sensitivity of the STIS instrument has allowed us to detect the magnetic dipole transitions of Fe XII at 1242.00 and 1349 38 Å for the first time in a star other than the Sun. The width of the stronger line at 1242.00 Å has also been measured; such measurements are not possible for the permitted lines of Fe XII in the extreme-ultraviolet. To within the accuracy of the measurements the N v and the Fe XII lines occur at their rest wavelengths. Electron densities and linewidths have been measured from other transition region lines. Together, these can be used to investigate the non-thermal energy flux in the lower and upper transition regions, which is useful in constraining possible heating processes. The Fe XII lines are also present in archival STIS spectra of other G/K-type dwarfs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analyses of the widths and shifts of optically thin emission lines in the ultraviolet spectrum of the active dwarf e Eri (K2 V) are presented. The spectra were obtained using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer. The linewidths are used to find the non-thermal energy density and its variation with temperature from the chromosphere to the upper transition region. The energy fluxes that could be carried by Alfvén and acoustic waves are investigated, to test their possible roles in coronal heating. Acoustic waves do not appear to be a viable means of coronal heating. There is, in principle, ample flux in Alfvén waves, but detailed calculations of wave propagation are required before definite conclusions can be drawn concerning their viability. The high sensitivity and spectral resolution of the above instruments have allowed two-component Gaussian fits to be made to the profiles of the stronger transition region lines. The broad and narrow components that result share some similarities with those observed in the Sun, but in e Eri the broad component is redshifted relative to the narrow component and contributes more to the total line flux. The possible origins of the two components and the energy fluxes implied are discussed. On balance our results support the conclusion of Wood, Linsky & Ayres, that the narrow component is related to Alfvén waves reaching to the corona, but the origin of the broad component is not clear.