5 resultados para Soil mapping

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mineral exploration programmes around the world use data from remote sensing, geophysics and direct sampling. On a regional scale, the combination of airborne geophysics and ground-based geochemical sampling can aid geological mapping and economic minerals exploration. The fact that airborne geophysical and traditional soil-sampling data are generated at different spatial resolutions means that they are not immediately comparable due to their different sampling density. Several geostatistical techniques, including indicator cokriging and collocated cokriging, can be used to integrate different types of data into a geostatistical model. With increasing numbers of variables the inference of the cross-covariance model required for cokriging can be demanding in terms of effort and computational time. In this paper a Gaussian-based Bayesian updating approach is applied to integrate airborne radiometric data and ground-sampled geochemical soil data to maximise information generated from the soil survey, to enable more accurate geological interpretation for the exploration and development of natural resources. The Bayesian updating technique decomposes the collocated estimate into a production of two models: prior and likelihood models. The prior model is built from primary information and the likelihood model is built from secondary information. The prior model is then updated with the likelihood model to build the final model. The approach allows multiple secondary variables to be simultaneously integrated into the mapping of the primary variable. The Bayesian updating approach is demonstrated using a case study from Northern Ireland where the history of mineral prospecting for precious and base metals dates from the 18th century. Vein-hosted, strata-bound and volcanogenic occurrences of mineralisation are found. The geostatistical technique was used to improve the resolution of soil geochemistry, collected one sample per 2 km2, by integrating more closely measured airborne geophysical data from the GSNI Tellus Survey, measured over a footprint of 65 x 200 m. The directly measured geochemistry data were considered as primary data in the Bayesian approach and the airborne radiometric data were used as secondary data. The approach produced more detailed updated maps and in particular maximized information on mapped estimates of zinc, copper and lead. Greater delineation of an elongated northwest/southeast trending zone in the updated maps strengthened the potential to investigate stratabound base metal deposits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elements in grain crops such as iron, zinc and selenium are essential in the human diet, whereas elements such as arsenic are potentially toxic to humans. This study aims to identify quantitative trait loci (QTLs) for trace elements in rice grain. A field experiment was conducted in an arsenic enriched field site in Qiyang, China using the Bala x Azucena mapping population grown under standard field conditions. Grains were subjected to elemental analysis by inductively coupled plasma mass spectroscopy. QTLs were detected for the elemental composition within the rice grains, including for iron and selenium, which have previously been detected in this population grown at another location, indicating the stability of these QTLs. A correlation was observed between flowering time and a number of the element concentrations in grains, which was also revealed as co-localisation between flowering time QTLs and grain element QTLs. Unravelling the environmental conditions that influence the grain ionome appears to be complex, but from the results in this study one of the major factors which controls the accumulation of elements within the grain is flowering time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research into the composition of cereal grains is motivated by increased interest in food quality. Here multi-element analysis is conducted on leaves and grain of the Bala x Azucena rice mapping population grown in the field. Quantitative trait loci (QTLs) for the concentration of 17 elements were detected, revealing 36 QTLs for leaves and 41 for grains. Epistasis was detected for most elements. There was very little correlation between leaf and grain element concentrations. For selenium, lead, phosphorus and magnesium QTLs were detected in the same location for both tissues. In general, there were no major QTL clusters, suggesting separate regulation of each element. QTLs for grain iron, zinc, molybdenum and selenium are potential targets for marker assisted selection to improve seed nutritional quality. An epistatic interaction for grain arsenic also looks promising to decrease the concentration of this carcinogenic element. © Springer Science+Business Media B.V. 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing tungsten (W) use for industrial and military applications has resulted in greater W discharge into natural waters, soils and sediments. Risk modeling of W transport and fate in the environment relies on measurement of the release/mobilization flux of W in the bulk media and the interfaces between matrix compartments. Diffusive gradients in thin-films (DGT) is a promising passive sampling technique to acquire such information. DGT devices equipped with the newly developed high-resolution binding gels (precipitated zirconia, PZ, or ferrihydrite, PF, gels) or classic/conventional ferrihydrite slurry gel were comprehensively assessed for measuring W in waters. FerrihydriteDGT can measure W at various ionic strengths (0.001–0.5 mol L−1 NaNO3) and pH (4–8), while PZDGT can operate across slightly wider environmental conditions. The three DGT configurations gave comparable results for soil W measurement, showing that typically W resupply is relatively poorly sustained. 1D and 2D high-resolution W profiling across sediment—water and hotspot—bulk media interfaces from Lake Taihu were obtained using PZDGT coupled with laser ablation ICP–MS measurement, and the apparent diffusion fluxes across the interfaces were calculated using a numerical model.