5 resultados para Soil Pollutants

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although exogenous factors such as pollutants can act on endogenous drivers (e.g. dispersion) of populations and create spatially autocorrelated distributions, most statistical techniques assume independence of error terms. As there are no studies on metal soil pollutants and microarthropods that explicitly analyse this key issue, we completed a field study of the correlation between Oribatida and metal concentrations in litter, organic matter and soil in an attempt to account for spatial patterns of both metals and mites. The 50-m wide study area had homogenous macroscopic features, steep Pb and Cu gradients and high levels of Zn and Cd. Spatial models failed to detect metal-oribatid relationships because the observed latitudinal and longitudinal gradients in oribatid assemblages were independent of the collinear gradients in the concentration of metals. It is therefore hypothesised that other spatially variable factors (e.g. fungi, reduced macrofauna) affect oribatid assemblages, which may be influenced by metals only indirectly. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ectomycorrhizal fungi and saprotrophic microorganisms coexist and interact in the mycorrhizosphere. We review what is known regarding these interactions and how they may influence processes such as ectomycorrhiza formation, mycelial growth, and the dynamics of carbon movement to and within the rhizosphere. Particular emphasis is placed on the potential importance of interactions in decomposition of soil organic matter and degradation of persistant organic pollutants in soil. While our knowledge is currently fairly limited, it seems likely that interactions have profound effects on mycorrhizosphere processes. More extensive research is warranted to provide novel insights into mycorrhizosphere ecology and to explore the potential for manipulating the ectomycorrhizosphere environment for biotechnological purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microcosm system was used to investigate and compare transfers of 14C labeled-1,2-dichlorobenzene (DCB), 1,2,4-trichlorobenzene (TCB) and hexachlorobenzene (HCB) in an air-soil-plant system using single grass tillers planted into spiked soil. This study was the second phase of a development investigation for eventual study of a range of xenobiotic pollutants. Recoveries from the system were excellent at >90%. The predominant loss pathway for 14C labeled-1,2-DCB and 1,2,4-TCB was volatilisation with 85% and 76% volatilisation of parent compound and volatile metabolites over 5 weeks respectively. Most of the added label in the hexachlorobenzene spiked system remained in soil. Mineralisation was