10 resultados para Small fish
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Global development has, in recent years, been shaped by the rise of transnational capital. This has implications for the quality and effectiveness of those national laws, regulations and policies in place to monitor transnational capital, ensure that multi national organisations assume responsibility and hold them accountable should they fail to do so. In balancing these objectives, contrasting issues come to the fore, such as the fear of capital flight; an issue especially profound in small open economies where the balance may tip in the favour of retaining, as opposed to regulating, foreign capital.
This paper can be considered in three parts. First, the paper addresses the shift in global leadership from national governments to multinational corporations (with particular reference to the rise of the Transnational Capitalist Class). This shift will incorporate the connotations of the Third Way. In considering this ideology, it will propose the Third Way as a transition phase to a stage when government is more the “third wheel” than an equal partner in governance structures. Second, the implications of the changing nature of governance on the capacity of nation states to develop effective laws, regulations and policies is discussed which leads on to the third aspect of the paper which identifies the challenges for governments, business and society in reimagining the governance structure pertaining to law, regulation and policy and the need to reconsider existing structures in light of global shifts in power structures.
A new leadership structure, both within the national and international governance system has far reaching implications. Boundary constraints no longer an issue, the potential for equality and global democracy is huge. Instead, a post recessionary world faces new governance challenges in the shape of; legitimacy; accountability and responsibility. Capitalism has invaded government and the primary challenge will be in avoiding the same issues that have dogged our financial markets for the last number of years. The challenge then to laws, regulations and public policy is huge, especially considering that the governments regulating are smaller than those dictating agenda on a global level
Resumo:
The Large Fish Indicator (LFI) is a size-based indicator of fish community state. The indicator describes the proportion by biomass of a fish community represented by fish larger than some size threshold. From an observed peak value of 0.49 in 1990, the Celtic Sea LFI declined until about 2000 and then fluctuated around 0.10 throughout the 2000s. This decline in the LFI reflected a period of diminishing ‘large’ fish biomass, probably related to high levels of size selective fishing. During the study period, fishing mortality was maintained at consistently high values. Average biomass of ‘small’ fish fluctuated across the whole time series, showing a weak positive trend in recent years. Inter-annual variation in the LFI was increasingly driven by fluctuation in small fish biomass as large fish biomass declined. Simulations using a size-based ecosystem model suggested that recovery in Celtic Sea fish community size-structure (LFI) could demand at least 20% reductions in fishing pressure and occur on decadal timescales.
Resumo:
We manipulated the diversity of top predators in a three trophic level marine food web. The food web included four top benthic marine fish predators (black goby, rock goby, sea scorpion and shore rockling), an intermediate trophic level of small fish, and a lower trophic level of benthic invertebrates. We kept predator density constant and monitored the response of the lower trophic levels. As top predator diversity increased, secondary production increased. We also observed that in the presence of the manipulated fish predators, the density of small gobiid fish (intermediate consumers) was suppressed, releasing certain groups of benthic invertebrates (caprellid amphipods, copepods, nematodes and spirorbid worms) from heavy intermediate predation pressure. We attribute the mechanism responsible for this trophic cascade to a trait-mediated indirect interaction, with the small gobiid fish changing their use of space in response to altered predator diversity. In the absence of top fish predators, a full-blown trophic cascade occurs. Therefore the diversity of predators reduces the likelihood of trophic cascades occurring and hence provides insurance against the loss of an important ecosystem function (i.e. secondary production).
Resumo:
Analysis of carbon and nitrogen stable isotopes has allowed freshwater ecologists to examine lake food webs in increasing detail. Many such studies have highlighted the existence of separate within-lake pelagic and benthic-littoral food webs but are typically conducted on large (> 10 km2) lakes, whereas the majority of lakes are actually relatively small. We used stable isotope analysis (δ13C & δ15N) to examine trophic interactions between fish and their prey in Plu�see, as an example of a small, stratifying lake, and to determine whether separate pelagic/benthic-littoral food webs could be distinguished in such systems. Our results indicate that the Plu�see food web was complicated, and due to extensive intra-annual isotopic variation in zooplankton (e.g. cladoceran δ13C annual range = 25.6�), it may be impossible to definitively assign consumers from small, eutrophic stratified lakes to pelagic or benthic-littoral food webs. We present evidence that some components of the Plu�see food web (large bream) may be subsidised by carbon of methanogenic origin.
Resumo:
An attempt to improve the food base for brown trout Salmo trutta in Northern Ireland was made in 1958.59 by deliberately introducing English Gammarus pulex into several Irish rivers. In addition. another amphipod Crangonyx pseudogracilis, was later accidently introduced into II ish waters. Our study represents the first attempt to examine the trophic interactions between a native fish predator (S. trutta) and an array of these native (Gammarus duebeni celticus) and introduced (G. pulex and C. pseudogracilis) amphipods. Feeding experiments, involving young brown trout predators and ampiphod prey, revealed that the fish actively selected C. pseudogracilis relative to two alternative Gammarus prey species. Although the trout encountered the Gammarus species more than C. pseudogracilis, they were eaten less than Crangonyx. Difficulties in handling and ingestion of Gammarus by trout may be a. key component of the preference fbr the smaller, more easily handled Crangonyx. The microdistribution of the species was altered by the fish, due to predation being greater in particular microhabitats, Our study showed that the introduction of the herbivorous C. pseudogracilis into Irish freshwaters may represent a useful addition to fish diets. particularly for small and/or juvenile fish. The reprecussions of the deliberate introduction of G. pulex are less clear. It may improve feeding for fish. but only if it can coexist with indigenous macroinvertebrates and thus ultimately improve the range and quantity of possible food items in predator diets. Alternatively, being highly predatory towards other macroinvertebrates including G. d. celticus and C. pseudogracilis. G. pulex may be deleterious to the diversity of the resident benthic community and hence reduce the diversity of prey available to fish predators.
Resumo:
Aggregations or blooms of jellyfish are increasingly problematic for the aquaculture industry. Jellyfishassociated mass mortalities of sea-caged fish are most often caused by swarms of oceanic species like Pelagia noctiluca. These relatively large jellyfish get carried by tides and currents onto fish cages, causing them to break up into pathogenic nematocyst-containing pieces that are capable of passing through the mesh of the cages. The main effect on fish is gill damage leading to respiratory distress, but the lesions may also be compounded by bacterial infection, Tenacibaculum maritimum being one of the pathogens involved. In our previous study, we highlighted the ability of the jellyfish Phialella quadrata to carry this important pathogen. However, since these small jellyfish were collected around sea-cages of infected salmon, it was not possible to determine if the jellyfish or the fish themselves were the original source of the bacteria. Results of the current study demonstrate that these filamentous bacteria are present on the mouth of P. noctiluca that had no previous contact with farmed fish. These new results highlight the fact that some Cnidarian species harbour T. maritimum and suggest that jellyfishmight be a natural host for these bacteria whose environmental reservoir has not yet been determined.
Resumo:
An organism’s home range dictates the spatial scale on which important processes occur (e.g. competition and predation) and directly affects the relationship between individual fitness and local habitat quality. Many reef fish species have very restricted home ranges after settlement and, here, we quantify home-range size in juveniles of a widespread and abundant reef fish in New Zealand, the common triplefin (Forsterygion lapillum). We conducted visual observations on 49 juveniles (mean size = 35-mm total length) within the Wellington harbour, New Zealand. Home ranges were extremely small, 0.053 m2 ± 0.029 (mean ± s.d.) and were unaffected by adult density, body size or substrate composition. A regression tree indicated that home-range size sharply decreased ~4.5 juveniles m–2 and a linear mixed model confirmed that home-range sizes in high-density areas (>4.5 juveniles m–2) were significantly smaller (34%) than those in low-density areas (after accounting for a significant effect of fish movement on our home-range estimates). Our results suggest that conspecific density may have negative and non-linear effects on home-range size, which could shape the spatial distribution of juveniles within a population, as well as influence individual fitness across local density gradients.
Resumo:
High gene flow is considered the norm for most marine organisms and is expected to limit their ability to adapt to local environments. Few studies have directly compared the patterns of differentiation at neutral and selected gene loci in marine organisms. We analysed a transcriptome-derived panel of 281 SNPs in Atlantic herring (Clupea harengus), a highly migratory small pelagic fish, for elucidating neutral and selected genetic variation among populations and to identify candidate genes for environmental adaptation. We analysed 607 individuals from 18 spawning locations in the northeast Atlantic, including two temperature clines (5-12 °C) and two salinity clines (5-35‰). By combining genome scan and landscape genetic analyses, four genetically distinct groups of herring were identified: Baltic Sea, Baltic-North Sea transition area, North Sea/British Isles and North Atlantic; notably, samples exhibited divergent clustering patterns for neutral and selected loci. We found statistically strong evidence for divergent selection at 16 outlier loci on a global scale, and significant correlations with temperature and salinity at nine loci. On regional scales, we identified two outlier loci with parallel patterns across temperature clines and five loci associated with temperature in the North Sea/North Atlantic. Likewise, we found seven replicated outliers, of which five were significantly associated with low salinity across both salinity clines. Our results reveal a complex pattern of varying spatial genetic variation among outlier loci, likely reflecting adaptations to local environments. In addition to disclosing the fine scale of local adaptation in a highly vagile species, our data emphasize the need to preserve functionally important biodiversity.
Resumo:
Regulations on the exploitation of populations of commercially important fish species and the ensuing consumer interest in sustainable products have increased the need to accurately identify the population of origin of fish and fish products. Although genomics-based tools have proven highly useful, there are relatively few examples in marine fish displaying accurate origin assignment. We synthesize data for 156 single-nucleotide polymorphisms typed in 1039 herring, Clupea harengus L., spanning the Northeast Atlantic to develop a tool that allows assignment of individual herring to their regional origin. We show the method's suitability to address specific biological questions, as well as management applications. We analyse temporally replicated collections from two areas, the Skagerrak (n = 81, 84, 66) and the western Baltic (n = 52, 52). Both areas harbour heavily fished mixed-origin stocks, complicating management issues. We report novel genetic evidence that herring from the Baltic Sea contribute to catches in the North Sea, and find support that western Baltic feeding aggregations mainly constitute herring from the western Baltic with contributions from the Eastern Baltic. Our study describes a general approach and outlines a database allowing individual assignment and traceability of herring across a large part of its East Atlantic distribution.