7 resultados para Small Suspended Particles
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Research is progressing fast in the field of the hydrogen assisted hydrocarbon selective catalytic reduction (HC-SCR) over Ag-based catalysts: this paper is a review of the work to date in this area. The addition of hydrogen to the HC-SCR reaction feed over Ag/Al2O3 results in a remarkable improvement in NO (x) conversion using a variety of different hydrocarbon feeds. There is some debate concerning the role that hydrogen has to play in the reaction mechanism and its effect on the form of Ag present during the reaction. Many of the studies use in situ UV-Vis spectroscopy to monitor the form of Ag in the catalyst and appear to indicate that the addition of hydrogen promotes the formation of small Ag clusters which are highly reactive for NO (x) conversion. However, some authors have expressed concern about the use of this technique for these materials and further work is required to address these issues before this technique can be used to give an accurate assessment of the state of Ag during the SCR reaction. A study using in situ EXAFS to probe the H-2 assisted octane-SCR reaction has shown that small Ag particles (containing on average 3 silver atoms) are formed during the SCR reaction but that the addition of H-2 to the feed does not result in any further change in the Ag particle size. This points to the direct involvement of H-2 in the reaction mechanism. Clearly the addition of hydrogen results in a large increase in the number and variety of adsorbed species on the surface of the catalyst during the reaction. Some authors have suggested that conversion of cyanide to isocyanate is the rate-determining step and that hydrogen promotes this conversion. Others have suggested that hydrogen reduces nitrates to more reactive nitrite species which can then activate the hydrocarbon; activation of the hydrocarbon to form acetates has been proposed as the key step. It is probable that all these promotional effects can take place and that it very much depends on the reaction temperature and feed conditions as to which one is most important.
Resumo:
Lead is highly toxic to animals. Humans eating game killed using lead ammunition generally avoid swallowing shot or bullets and dietary lead exposure from this source has been considered low. Recent evidence illustrates that lead bullets fragment on impact, leaving small lead particles widely distributed in game tissues. Our paper asks whether lead gunshot pellets also fragment upon impact, and whether lead derived from spent gunshot and bullets in the tissues of game animals could pose a threat to human health.
Resumo:
The efficient resonant nonlinear coupling between localized surface plasmon modes is demonstrated in a simple and intuitive way using boundary integral formulation and utilizing second-order optical nonlinearity. The nonlinearity is derived from the hydrodynamic description of electron plasma and originates from the presence of material interfaces in the case of small metal particles. The coupling between fundamental and second-harmonic modes is shown to be symmetry selective and proportional to the spatial overlap between polarization dipole density of the second-harmonic mode and the square of the polarization charge density of the fundamental mode. Particles with high geometrical symmetry will convert a far-field illumination into dark nonradiating second-harmonic modes, such as quadrupoles. Effective second-harmonic susceptibilities are proportional to the surface-to-volume ratio of a particle, emphasizing the nanoscale enhancement of the effect.
Resumo:
Dietary flavonoid intake, especially berry flavonoids, has been associated with reduced risks of cardiovascular disease (CVD) in large prospective cohorts. Few clinical studies have examined the effects of dietary berries on CVD risk factors. We examined the hypothesis that freeze-dried strawberries (FDS) improve lipid and lipoprotein profiles and lower biomarkers of inflammation and lipid oxidation in adults with abdominal adiposity and elevated serum lipids. In a randomized dose-response controlled trial, 60 volunteers [5 men and 55 women; aged 49 ± 10 y; BMI: 36 ± 5 kg/m2 (means ± SDs)] were assigned to consume 1 of the following 4 beverages for 12 wk: 1) low-dose FDS (LD-FDS; 25 g/d); 2) low-dose control (LD-C); 3) high-dose FDS (HD-FDS; 50 g/d); and 4) high-dose control (HD-C). Control beverages were matched for calories and total fiber. Blood draws, anthropometrics, blood pressure, and dietary data were collected at screening (0 wk) and after 12-wk intervention. Dose-response analyses revealed significantly greater decreases in serum total and LDL cholesterol and nuclear magnetic resonance (NMR)–derived small LDL particle concentration in HD-FDS [33 ± 6 mg/dL, 28 ± 7 mg/dL, and 301 ± 78 nmol/L, respectively (means ± SEMs)] vs. LD-FDS (−3 ± 11 mg/dL, −3 ± 9 mg/dL, and −28 ± 124 nmol/L, respectively) over 12 wk (0–12 wk; all P < 0.05). Compared with controls, only the decreases in total and LDL cholesterol in HD-FDS remained significant vs. HD-C (0.7 ± 12 and 1.4 ± 9 mg/dL, respectively) over 12 wk (0–12 wk; all P < 0.05). Both doses of strawberries showed a similar decrease in serum malondialdehyde at 12 wk (LD-FDS: 1.3 ± 0.2 μmol/L; HD-FDS: 1.2 ± 0.1 μmol/L) vs. controls (LD-C: 2.1 ± 0.2 μmol/L; HD-C: 2.3 ± 0.2 μmol/L) (P < 0.05). In general, strawberry intervention did not affect any measures of adiposity, blood pressure, glycemia, and serum concentrations of HDL cholesterol and triglycerides, C-reactive protein, and adhesion molecules. Thus, HD-FDS exerted greater effects in lowering serum total and LDL cholesterol and NMR-derived small LDL particles vs. LD-FDS in the 12-wk study. These findings warrant additional investigation in larger trials. This trial was registered at clinicaltrials.gov as NCT01883401.
Resumo:
Nitochondrial NADH:ubiquinone-reductase (Complex I) catalyzes proton translocation into inside-out submitochondrial particles. Here we describe a method for determining the stoichiometric ratio (H) over right arrow (+)/2e(-) (n) for the coupled reaction of NADH oxidation by the quinone accepters. Comparison of the initial rates of NADH oxidation and alkalinization of the surrounding medium after addition of small amounts of NADH to coupled particles in the presence of Q(1) gives the value of n = 4. Thermally induced deactivation of Complex I [1, 2] results in complete inhibition of the NADH oxidase reaction but only partial inhibition of the NADH:Q(1)-reductase reaction. N-Ethylmaleimide (NEM) prevents reactivation and thus completely blocks the thermally deactivated enzyme. The residual NADH:Q(1)-reductase activity of the deactivated, NEM-treated enzyme is shown to be coupled with the transmembraneous proton translocation (n = 4). Thus, thermally induced deactivation of Complex 1 as well as specific inhibitors of the endogenous ubiquinone reduction (rotenone, piericidin A) do not inhibit the proton translocating activity of the enzyme.
Resumo:
Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9σ annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusplike behavior of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, enhancing the differential cross section by up to 1000 times.