225 resultados para Skin-sparing mastectomy
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Introduction: Immediate reconstruction following mastectomy for breast cancer has been shown to be oncologically safe and associated with improved psychosocial outcomes for patients. Bostwick described a technique for one-stage implant based reconstruction, combining skin-sparing mastectomy with concurrent reduction of the skin envelope. This report reviews the experience of a single centre using skin-reducing mastectomy and one-stage implant reconstruction in both early stage breast cancer and risk-reducing mastectomy, with specific reference to frequency of complications, implant loss and oncological outcomes.
Methods and results: A retrospective review was undertaken to identify women who had undergone skin-reducing mastectomy and one-stage implant reconstruction using a de-epithelialised dermal flap, between October 2008 and October 2012. One hundred and four consecutive mastectomies, with reconstruction, were performed by two surgeons on 64 patients. No complications were seen in 43.8% of patients. At three months, four implants were lost (3.8% of breast reconstructions, 6.3% of patients), due to either peri-implant infection or mastectomy skin flap necrosis. One patient required unplanned return to theatre for evacuation of a haematoma. Minor mastectomy skin flap necrosis was seen in 10 breasts (9.6% of reconstructed breasts) and superficial wound infection in 8 breasts (7.7% of reconstructed breasts). All of these complications were managed conservatively and none required operative intervention. At a median follow up of 35 months (4-53 months) there had been one episode of ipsilateral axillary nodal recurrence.
Conclusion: One-stage implant reconstruction using a myo-dermal flap technique following skin-reducing mastectomy is safe and should be considered in selected patients. Most complications are minor and will resolve with conservative management. Major complications such as implant failure or immediate reoperation, were relatively uncommon (6.3% patients, 3.8% of reconstructed breasts). Early follow-up suggests that oncological outcomes are satisfactory, but longer follow-up is required to substantiate this. (C) 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Immediate breast reconstruction after mastectomy has increased over the past decade following the unequivocal demonstration of its oncological safety and the availability of reliable methods of reconstruction. Broadly, it is undertaken in the treatment of breast cancer, after prophylactic mastectomy in high-risk patients, and in the management of treatment failure after breast-conserving surgery and radiotherapy. Immediate breast reconstruction can be achieved reliably with a variety of autogenous tissue techniques or prosthetic devices. Careful discussion and evaluation remain vital in choosing the correct technique for the individual patient.
Methods: This review is based primarily on an English language Medline search with secondary references obtained from key articles.
Results and conclusion: Immediate breast reconstruction is a safe and acceptable procedure after mastectomy for cancer; there is no evidence that it has untoward oncological consequences. In the appropriate patient it can be achieved effectively with either prosthetic or autogenous tissue reconstruction. Patient selection is important in order to optimize results, minimize complications and improve quality of life, while simultaneously treating the malignancy. Close cooperation and collaboration between the oncological breast and reconstructive achieve these objectives.
Resumo:
On the basis of histamine release from rat peritoneal mast cells, an octadecapeptide was isolated from the skin extract of the Northern Leopard frog (Rana pipiens), This peptide was purified to homogeneity using reversed-phase high performance liquid chromatography and found to have the following primary structure by Edman degradation and pyridylethylation: LVRGCWTKSYPPKPCFVR, in which Cys(5) and Cys(15) are disulfide bridged. The peptide was named peptide leucine-arginine (pLR), reflecting the N- and C-terminal residues. Molecular modeling predicted that pLR possessed a rigid tertiary loop structure with flexible end regions, pLR was synthesized and elicited rapid, noncytolytic histamine release that had a a-fold greater potency when compared with one of the most active histamine-liberating peptides, namely melittin, pLR was able to permeabilize negatively charged unilamellar lipid vesicles but not neutral vesicles, a finding that was consistent with its nonhemolytic action, pLR inhibited the early development of granulocyte macrophage colonies from bone marrow stem cells but did not induce apoptosis of the end stage granulocytes, i,e. mature neutrophils, pLR therefore displays biological activity with both granulopoietic progenitor cells and mast cells and thus represents a novel bioactive peptide from frog skin.
Resumo:
Amphibian defensive skin secretions are complex, species-specific cocktails of biologically active molecules, including many uncharacterized peptides. The study of such secretions for novel peptide discovery is time-limited, as amphibians are in rapid global decline. While secretion proteome analysis is non-lethal, transcriptome analysis has until now required killing of specimens prior to skin dissection for cDNA library construction. Here we present the discovery that polyadenylated mRNAs encoding dermal granular gland peptides are present in defensive skin secretions, stabilized by endogenous nucleic acid-binding amphipathic peptides. Thus parallel secretory proteome and transcriptome analyses can be performed without killing the specimen in this model amphibian system--a finding that has important implications in conservation of biodiversity within this threatened vertebrate taxon and whose mechanistics may have broader implications in biomolecular science.
Resumo:
The need to integrate cost into the early product definition process as an engineering parameter is addressed. The application studied is a fuselage panel that is typical for commercial transport regional jets. Consequently, a semi-empirical numerical analysis using reference data was coupled to model the structural integrity of thin-walled structures with regard to material failure and buckling: skin, stringer, flexural, and interrivet. The optimization process focuses on direct operating cost (DOC) as a function of acquisition cost and fuel burn. It was found that the ratio of acquisition cost to fuel burn was typically 4:3 and that there was a 10% improvement in the DOC for the minimal DOC condition over the minimal weight condition because of the manufacturing cost saving from having a reduced number of larger-area stringers and a slightly thicker skin than that preferred by the minimal weight condition. Also note that the minimal manufacturing cost condition was slightly better than the minimal weight condition, which highlights the key finding: The traditional minimal weight condition is a dated and suboptimal approach to airframe structural design.
Resumo:
Brevinins are peptides of 24 amino acid residues, originally isolated from the skin of the Oriental frog, Rana brevipoda porsa, by nature of their microbicidal activity against a wide range of Gram-positive and Gram-negative bacteria and against strains of pathogenic fungi. cDNA libraries were constructed from lyophilized skin secretion of three, unstudied species of Chinese frog, Odorrana schmackeri, Odorrana versabilis and Pelophylax plancyi fukienensis, using our recently developed technique. In this report, we describe the “shotgun” cloning of novel brevinins by means of 3'-RACE, using a “universal” degenerate primer directed towards a highly conserved nucleic acid sequence domain within the 5'-untranslated region of previously characterized frog skin peptide cDNAs. Novel brevinins, deduced from cloned cDNA open-reading frames, were subsequently identified as mature peptides in the same samples of respective species skin secretions. Bioinformatic analysis of both prepro-brevinin nucleic acid sequences and translated open-reading frame amino acid sequences revealed a highly conserved signal peptide domain and a hypervariable anti-microbial peptide-encoding domain. The experimental approach described here can thus rapidly provide robust structural data on skin anti-microbial peptides without harming the donor amphibians.