75 resultados para Single-Photon Emission-Computed
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Strong evidence of a single-photon tunneling effect, a direct analog of single-electron tunneling, has been obtained in the measurements of light tunneling through individual subwavelength pinholes in a gold film covered with a layer of polydiacetylene. The transmission of some pinholes reached saturation because of the optical nonlinearity of polydiacetylene at a very low light intensity of a few thousand photons per second. This result is explained theoretically in terms of a "photon blockade," similar to the Coulomb blockade phenomenon observed in single-electron tunneling experiments. Single-photon tunneling may find applications in the fields of quantum communication and information processing.
Resumo:
We provide the quantum-mechanical description of the excitation of surface plasmon polaritons on metal surfaces by single photons. An attenuated-reflection setup is described for the quantum excitation process in which we find remarkably efficient photon-to-surface plasmon wave-packet transfer. Using a fully quantized treatment of the fields, we introduce the Hamiltonian for their interaction and study the quantum statistics during transfer with and without losses in the metal.
Resumo:
Experimental and theoretical results are reported for photoionization of Ta-like (W+) tungsten ions. Absolute cross sections were measured in the energy range 16–245 eV employing the photon–ion merged-beam setup at the advanced light source in Berkeley. Detailed photon-energy scans at 100 meV bandwidth were performed in the 16–108 eV range. In addition, the cross section was scanned at 50 meV resolution in regions where fine resonance structures could be observed. Theoretical results were obtained from a Dirac–Coulomb R-matrix approach. Photoionization cross section calculations were performed for singly ionized atomic tungsten ions in their 5s25p65d4(5D)6s 6Dj. J = 1/2, ground level and the associated excited metastable levels with J = 3/2, 5/2, 7/2 and 9/2. Since the ion beams used in the experiments must be expected to contain long-lived excited states also from excited configurations, additional cross-section calculations were performed for the second-lowest term, 5d56Sj, J = 5/2, and for the 4F term, 5d36s2 4Fj, with J = 3/2, 5/2, 7/2 and 9/2. Given the complexity of the electronic structure of W+ the calculations reproduce the main features of the experimental cross section quite well.
Resumo:
We apply time-dependent R-matrix theory to study inner-shell ionization of C atoms in ultra-short high-frequency light fields with a photon energy between 170 and 245 eV. At an intensity of 1017 W/cm2, ionization is dominated by single-photon emission of a 2l electron, with two-photon emission of a 1s electron accounting for about 2-3% of all emission processes, and two-photon emission of 2l contributing about 0.5-1%. Three-photon emission of a 1s electron is estimated to contribute about 0.01-0.03%. Around a photon energy of 225 eV, two-photon emission of a 1s electron, leaving C+ in either 1s2s2p3 or 1s2p4 is resonantly enhanced by intermediate 1s2s22p3 states. The results demonstrate the capability of time-dependent R-matrix theory to describe inner-shell ionization processes including rearrangement of the outer electrons.
Resumo:
It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (alpha>2) and high fidelity (F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.
Resumo:
Single- and multiphoton detachment rates have been calculated for K- using the R-matrix Floquet approach. Single-photon detachment rates, obtained at a laser field peak intensity of 10(9) W cm(-2), are discussed and compared with other theoretical work. Two-photon detachment rates at the same intensity have also been obtained, and similarities with results from earlier calculations for Li- and Na- are discussed. Three-photon rates are also presented at this laser intensity, and are compared and contrasted with those arising in the single-photon case, since both involve resonance structure with P-1(o) symmetry. The influence of resonances such as the 5s(2) S-1(e) doubly excited state and excitations of the residual atom are also considered.
Resumo:
Charge exchange X-ray and far-ultraviolet (FUV) aurorae can provide detailed insight into the interaction between solar system plasmas. Using the two complementary experimental techniques of photon emission spectroscopy and translation energy spectroscopy, we have studied state-selective charge exchange in collisions between fully ionized helium and target gasses characteristic of cometary and planetary atmospheres (H2O, CO2, CO, and CH4). The experiments were performed at velocities typical for the solar wind (200-1500 km s(-1)). Data sets are produced that can be used for modeling the interaction of solar wind alpha particles with cometary and planetary atmospheres. These data sets are used to demonstrate the diagnostic potential of helium line emission. Existing Extreme Ultraviolet Explorer (EUVE) observations of comets Hyakutake and Hale-Bopp are analyzed in terms of solar wind and coma characteristics. The case of Hale-Bopp illustrates well the dependence of the helium line emission to the collision velocity. For Hale-Bopp, our model requires low velocities in the interaction zone. We interpret this as the effect of severe post-bow shock cooling in this extraordinary large comet.
Resumo:
Experimental and theoretical studies of one-electron capture in collisions of He2+ ions with H2O molecules have been carried out in the range 0.025-12 keV amu(-1) corresponding to typical solar wind velocities of 70-1523 km s(-1). Translational energy spectroscopy (TES), photon emission spectroscopy (PES), and fragment ion spectroscopy were employed to identify and quantify the collision mechanisms involved. Cross sections for selective single electron capture into n=1, 2, and 3 states of the He+ ion were obtained using TES while PES provided cross sections for capture into the He+(2p) and He+(3p) states. Our model calculations show that He+(n=2) and He+(n=3) formation proceeds via a single-electron process governed by the nucleus-electron interaction. In contrast, the He+(1s) formation mechanism involves an exothermic two-electron process driven by the electron-electron interaction, where the potential energy released by the electron capture is used to remove a second electron thereby resulting in fragmentation of the H2O molecule. This process is found to become increasingly important as the collision energy decreases. The experimental cross sections are found to be in reasonable agreement with cross sections calculated using the Demkov and Landau-Zener models.
Resumo:
Translational energy spectroscopy (TES) has been used to study state-selective one-electron capture by H and He-like ions of C, N and O in both H and H-2 within the range 250-900 eV amu(- 1). The main collision mechanisms leading to state-selective electron capture have been identified, their relative importance assessed and compared, where possible, with theoretical predictions and with any previous measurements based on photon emission spectroscopy. For one-electron capture in H-2, the relative importance of contributions from non- dissociative and dissociative capture as well as from two- electron capture into autoionizing states is found to be strikingly different for the cases considered. Our TES measurements in atomic hydrogen provide an important extension of previous measurements to energies below 1000 eV amu(-1) and show that, as the impact energy decreases, electron capture becomes more selective until only a single n product channel is significant. These product main channels are well described by reaction windows calculated using a Landau-Zener approach. However, the same approach applied to the more complex energy- change spectra observed in H-2 is found to be less successful.