21 resultados para Simulating Materials Failure

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computational modelling is becoming ever more important for obtaining regulatory approval for new medical devices. An accepted approach is to infer performance in a population from an analysis conducted for an idealised or ‘average’ patient; we present here a method for predicting the performance of an orthopaedic implant when released into a population—effectively simulating a clinical trial. Specifically we hypothesise that an analysis based on a method for predicting the performance in a population will lead to different conclusions than an analysis based on an idealised or ‘average’ patient. To test this hypothesis we use a finite element model of an intramedullary implant in a bone whose size and remodelling activity is different for each individual in the population. We compare the performance of a low Young’s modulus implant (View the MathML source) to one with a higher Young’s modulus (200 GPa). Cyclic loading is applied and failure is assumed when the migration of the implant relative to the bone exceeds a threshold magnitude. The analysis for an idealised of ‘average’ patient predicts that the lower modulus device survives longer whereas the analysis simulating a clinical trial predicts no statistically-significant tendency (p=0.77) for the low modulus device to perform better. It is concluded that population-based simulations of implant performance–simulating a clinical trial–present a very valuable opportunity for more realistic computational pre-clinical testing of medical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To investigate whether failure to suppress the prostate-specific antigen (PSA) level to /=2 months of neoadjuvant luteinizing hormone-releasing hormone agonist therapy in patients scheduled to undergo external beam radiotherapy for localized prostate carcinoma is associated with reduced biochemical failure-free survival. METHODS AND MATERIALS: A retrospective case note review of consecutive patients with intermediate- or high-risk localized prostate cancer treated between January 2001 and December 2002 with neoadjuvant hormonal deprivation therapy, followed by concurrent hormonal therapy and radiotherapy was performed. Patient data were divided for analysis according to whether the PSA level in Week 1 of radiotherapy was 1 ng/mL in 52. At a median follow-up of 49 months, the 4-year actuarial biochemical failure-free survival rate was 84% vs. 60% (p = 0.0016) in favor of the patients with a PSA level after neoadjuvant hormonal deprivation therapy of 1 ng/mL at the beginning of external beam radiotherapy after >/=2 months of neoadjuvant luteinizing hormone-releasing hormone agonist therapy have a significantly greater rate of biochemical failure and lower survival rate compared with those with a PSA level of

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dynamic mathematical model for simulating the coupled heat and moisture migration through multilayer porous building materials was proposed. Vapor content and temperature were chosen as the principal driving potentials. The discretization of the governing equations was done by the finite difference approach. A new experimental set-up was also developed in this study. The evolution of transient temperature and moisture distributions inside specimens were measured. The method for determining the temperature gradient coefficient was also presented. The moisture diffusion coefficient, temperature gradient coefficient, sorption–desorption isotherms were experimentally evaluated for some building materials (sandstone and lime-cement mortar). The model was validated by comparing with the experimental data with good agreement. Another advantage of the method lies in the fact that the required transport properties for predicting the non-isothermal moisture flow only contain the vapor diffusion coefficient and temperature gradient coefficient. They are relatively simple, and can be easily determined.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a complex fiber bundle model for the optimization of heterogeneous materials, which consists of many simple bundles. We also present an exact and compact recursion relation for the failure probability of a simple fiber bundle model with local load sharing, which is more efficient than the ones reported previously. Using a ''renormalization method'' and the recursion relation developed for the simple bundle, we calculate the failure probabilities of the complex fiber bundle. When the total number of fibers is given, we find that there exists an optimum way to organize the complex bundle, in which one gets a stronger bundle than in other ways.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador: