29 resultados para Sensory-motor development

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite being largely characterised as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD). This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC) to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with "hyperdexterity" witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardised assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being 'secondary' level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential route of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Procedural pain in the neonatal intensive care unit triggers a cascade of physiological, behavioral and hormonal disruptions which may contribute to altered neurodevelopment in infants born very preterm, who undergo prolonged hospitalization at a time of physiological immaturity and rapid brain development. The aim of this study was to examine relationships between cumulative procedural pain (number of skin-breaking procedures from birth to term, adjusted for early illness severity and overall intravenous morphine exposure), and later cognitive, motor abilities and behavior in very preterm infants at 8 and 18 months corrected chronological age (CCA), and further, to evaluate the extent to which parenting factors modulate these relationships over time. Participants were N=211 infants (n=137 born preterm 32 weeks gestational age [GA] and n=74 full-term controls) followed prospectively since birth. Infants with significant neonatal brain injury (periventricular leucomalacia, grade 3 or 4 intraventricular hemorrhage) and/or major sensori-neural impairments, were excluded. Poorer cognition and motor function were associated with higher number of skin-breaking procedures, independent of early illness severity, overall intravenous morphine, and exposure to postnatal steroids. The number of skin-breaking procedures as a marker of neonatal pain was closely related to days on mechanical ventilation. In general, greater overall exposure to intravenous morphine was associated with poorer motor development at 8 months, but not at 18 months CCA, however, specific protocols for morphine administration were not evaluated. Lower parenting stress modulated effects of neonatal pain, only on cognitive outcome at 18 months.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxaliplatin, an effective cytotoxic treatment in combination with 5-fluorouracil for colorectal cancer, is associated with sensory, motor and autonomic neurotoxicity. Motor symptoms include hyperexcitability while autonomic effects include urinary retention, but the cause of these side-effects is unknown. We examined the effects on motor nerve function in the mouse hemidiaphragm and on the autonomic system in the vas deferens. In the mouse diaphragm, oxaliplatin (0.5 mM) induced multiple endplate potentials (EPPs) following a single stimulus, and was associated with an increase in spontaneous miniature EPP frequency. In the vas deferens, spontaneous excitatory junction potential frequency was increased after 30 min exposure to oxaliplatin; no changes in resting Ca(2+) concentration in nerve terminal varicosities were observed, and recovery after stimuli trains was unaffected.In both tissues, an oxaliplatin-induced increase in spontaneous activity was prevented by the voltage-gated Na(+) channel blocker tetrodotoxin (TTX). Carbamazepine (0.3 mM) also prevented multiple EPPs and the increase in spontaneous activity in both tissues. In diaphragm, beta-pompilidotoxin (100 microM), which slows Na(+) channel inactivation, induced multiple EPPs similar to oxaliplatin's effect. By contrast, blockers of K(+) channels (4-aminopyridine and apamin) did not replicate oxaliplatin-induced hyperexcitability in the diaphragm. The prevention of hyperexcitability by TTX blockade implies that oxaliplatin acts on nerve conduction rather than by effecting repolarisation. The similarity between beta-pompilidotoxin and oxaliplatin suggests that alteration of voltage-gated Na(+) channel kinetics is likely to underlie the acute neurotoxic actions of oxaliplatin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As a consequence of the fragility of various neural structures, preterm infants born at a low gestation and/or birthweight are at an increased risk of developing motor abnormalities. The lack of a reliable means of assessing motor integrity prevents early therapeutic intervention. In this paper, we propose a new method of assessing neonatal motor performance, namely the recording and subsequent analysis of intraoral sucking pressures generated when feeding nutritively. By measuring the infant's control of sucking in terms of a new development of tau theory, normal patterns of intraoral motor control were established for term infants. Using this same measure, the present study revealed irregularities in sucking control of preterm infants. When these findings were compared to a physiotherapist's assessment six months later, the preterm infants who sucked irregularly were found to be delayed in their motor development. Perhaps a goal-directed behaviour such as sucking control that can be measured objectively at a very young age, could be included as part of the neurological assessment of the preterm infant. More accurate classification of a preterm infant's movement abnormalities would allow for early therapeutic interventions to be realised when the infant is still acquiring the most basic of motor functions. (C) Springer-Verlag 2000.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gross anatomy of muscle and sensory/motor innervation of adult and intramolluscan developmental stages of Echinostoma caproni have been investigated to ascertain the organisation and the functional correlates of any stage-specific patterns of staining. Using indirect immunocytochemistry to demonstrate neuroactive substances and the phalloidin-fluorescence technique for staining myofibril F-actin, the muscle systems and aminergic and peptidergic innervation of daughter rediae, cercariae, metacercariae, and pre- and post-ovigerous adults were examined and compared using confocal scanning laser microscopy. A complex arrangement of specific muscle fibre systems occurs within the body wall (composed of circular, longitudinal and diagonal fibres), suckers (radial, equatorial, meridional), pharynx (radial, circular), gut caeca (mainly circular), cercarial tail (circular, pseudo-striated longitudinal), and ducts of the reproductive system (circular, longitudinal), presumed to serve locomotor, adhesive, alimentary and reproductive functions. Immunostaining for serotonin (5-HT) and FMRFamide-related peptides (FaRPs) was evident throughout the central (CNS) and peripheral (PNS) nervous systems of all stages, and use of dual-labelling techniques demonstrated separate neuronal pathways for 5-HT and FaRP in both CNS and PNS. FaRP expression in the innervation of the ootype wall was demonstrated only in post-ovigerous worms and not in pre-ovigerous worms, suggesting an involvement of FaRP neuropeptides in the process of egg assembly. Comparison of the present findings with those recorded for other digeneans suggests that muscle organisation and innervation patterns in trematodes are highly conserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Preterm and critically ill newborns admitted to a NICU undergo repeated skin-breaking procedures that are necessary for their survival. Sucrose is rapidly becoming the accepted clinical standard nonpharmacologic intervention for managing acute procedural pain for these infants. Although shown to be safe in single doses, only 4 studies have evaluated the effects of repeated doses of sucrose over relatively short periods of time. None has examined the use of sucrose throughout the NICU stay, and only 1 study evaluated the neurodevelopmental outcomes after repeated doses of sucrose. In that study, infants born at 10 doses per day in the first week of life were more likely to show poorer attention and motor development in the early months after discharge from the NICU. Results of studies in animal models have suggested that the mechanism of action of sucrose is through opioid pathways; however, in human infants, little has been done to examine the physiologic mechanisms involved, and the findings reported thus far have been ambiguous. Drawing from the growing animal literature of research that has examined the effects of chronic sugar exposure, we describe alternative amine and hormone pathways that are common to the processing of sucrose, attention, and motor development. In addition, a review of the latest research to examine the effects of repeated sucrose on pain processing is presented. These 2 literatures each can inform the other and can provide an impetus to initiate research to examine not only the mechanisms involved in the calming mechanisms of sucrose but also in the long-term neurodevelopmental effects of repeated sucrose in those infants born extremely preterm or critically ill.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neonatal pain-related stress is associated with elevated salivary cortisol levels to age 18 months in children born very preterm, compared to full-term, suggesting early programming effects. Importantly, interactions between immune/inflammatory and neuroendocrine systems may underlie programming effects. We examined whether cortisol changes persist to school age, and if common genetic variants in the promoter region of the NFKBIA gene involved in regulation of immune and inflammatory responses, modify the association between early experience and later life stress as indexed by hair cortisol levels, which provide an integrated index of endogenous HPA axis activity. Cortisol was assayed in hair samples from 128 children (83 born preterm =32 weeks gestation and 45 born full-term) without major sensory, motor or cognitive impairments at age 7 years. We found that hair cortisol levels were lower in preterm compared to term-born children. Downregulation of the HPA axis in preterm children without major impairment, seen years after neonatal stress terminated, suggests persistent alteration of stress system programming. Importantly, the etiology was gender-specific such that in preterm boys but not girls, specifically those with the minor allele for NFKBIA rs2233409, lower hair cortisol was associated with greater neonatal pain (number of skin-breaking procedures from birth to term), independent of medical confounders. Moreover, the minor allele (CT or TT) of NFKBIA rs2233409 was associated with higher secretion of inflammatory cytokines, supporting the hypothesis that neonatal pain-related stress may act as a proinflammatory stimulus that induces long-term immune cell activation. These findings are the first evidence that a long-term association between early pain-related stress and cortisol may be mediated by a genetic variants that regulate the activity of NF-?B, suggesting possible involvement of stress/inflammatory mechanisms in HPA programming in boys born very preterm. © 2013 Grunau et al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIM:
We examined the effect of partial hearing, including cochlear implantation, on the development of motor skills in children (aged 6-12y).

METHOD:
Three independent groups of children were selected: a partial hearing group (n=25 [14 males, 11 females]; mean age 8y 8mo, SD 1y 10mo), a nonverbal IQ-matched group (n=27 [15 males, 12 females]; mean age 9y, SD 1y 6mo), and an age-matched group (n=26 [8 males, 18 females]; mean age 8y 8mo, SD 1y 7mo) from three schools with special units for children with partial hearing. All children with partial hearing had a bilateral hearing loss >60 decibels. Motor and balance skills were assessed using the Movement Assessment Battery for Children (MABC) and two protocols from the NeuroCom Balance Master clinical procedures.

RESULTS:
The mean standardized total MABC score of the children with partial hearing (95% confidence interval [CI] 71.8-88.7) was significantly lower than both the age-matched (95% CI 95.8-111.4; p<0.01) and the IQ-matched (95% CI 87.6-103.0; p=0.03) comparison groups. The children with partial hearing had particular difficulties with balance, most notably during tests of intersensory demand. However, subgroup analyses revealed that the effect of cochlear implantation was clearly dependent on the nature of the task.

INTERPRETATION:
Children with partial hearing are at high risk of clinical levels of motor deficit, with balance difficulties providing support for conventional vestibular deficit theory. However, the effect of cochlear implantation suggests that other sensory systems may be involved. A broader ecological perspective, which takes into account factors external to the child, may prove a useful framework for future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction of vascular cells with the laminin component of basement membranes is important for normal cell function. Likewise, abnormal interactions may have a critical role in vascular pathology. It has been previously demonstrated that the 67 kDa laminin receptor (67LR) is expressed at high levels during proliferative retinopathy in a mouse model and in the current study we have examined 67LR in the neonatal mouse to determine if this receptor plays a role in aspects of developmental angiogenesis in the developing murine retina. Groups of C57/BL6 mice were killed at postnatal day P1, P3, P5, P7, P9 and P11 to assess the retinal vasculature. A number of mice were perfused with FITC-dextran and the eyes removed, fixed in 4% paraformaldehyde (PFA) and flat-mounted for confocal scanning laser microscopy. The eyes from the remaining mice were either placed in 4% PFA and embedded in paraffin-wax, or had the neural retina dissected off and total RNA or protein extracted. Immunofluorescence, in situ hybridization, quantitative reverse transcriptase polymerase chain reaction and Western blotting analysis were employed to locate and determine expression levels of 67LR. Both 67LR mRNA and protein expression showed a characteristic bi-phasic expression pattern which correlated with key stages of retinal vascular development in the murine retina. 67LR showed high expression levels at P1 (P < 0.05) (correlating with superficial vascular plexus formation) and at P7 (P < 0.05) (correlating with deep vascular plexus formation). Conversely, 67LR expression was decreased when active angiogenic activity was lowest. Significantly, optical sectioning of retinal flat-mounts revealed high levels of 67LR expression in developing segments of both superficial and deep capillary plexi, a pattern which co-localized strongly with laminin. 67LR is regulated during post-natal development of the retinal vasculature. High levels of 67LR during the two well-defined phases of retinal capillary plexus formation suggests that this receptor may play an important role in retinal angiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There can be wide variation in the level of oral/aural language ability that prelingually hearing-impaired children develop after cochlear implantation. Automatic perceptual processing mechanisms have come under increasing scrutiny in attempts to explain this variation. Using mismatch negativity methods, this study explored associations between auditory sensory memory mechanisms and verbal working memory function in children with cochlear implants and a group of hearing controls of similar age. Whilst clear relationships were observed in the hearing children between mismatch activation and working memory measures, this association appeared to be disrupted in the implant children. These findings would fit with the proposal that early auditory deprivation and a degraded auditory signal can cause changes in the processes underpinning the development of oral/aural language skills in prelingually hearing-impaired children with cochlear implants and thus alter their developmental trajectory