89 resultados para Semi-conductor
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Quantum-dot Cellular Automata (QCA) technology is a promising potential alternative to CMOS technology. To explore the characteristics of QCA and suitable design methodologies, digital circuit design approaches have been investigated. Due to the inherent wire delay in QCA, pipelined architectures appear to be a particularly suitable design technique. Also, because of the pipeline nature of QCA technology, it is not suitable for complicated control system design. Systolic arrays take advantage of pipelining, parallelism and simple local control. Therefore, an investigation into these architectures in QCA technology is provided in this paper. Two case studies, (a matrix multiplier and a Galois Field multiplier) are designed and analyzed based on both multilayer and coplanar crossings. The performance of these two types of interconnections are compared and it is found that even though coplanar crossings are currently more practical, they tend to occupy a larger design area and incur slightly more delay. A general semi-conductor QCA systolic array design methodology is also proposed. It is found that by applying a systolic array structure in QCA design, significant benefits can be achieved particularly with large systolic arrays, even more so than when applied in CMOS-based technology.
Resumo:
This paper describes a novel doped titania immobilised thin film multi tubular photoreactor which has been developed for use with liquid, vapour or gas phase media. In designing photocatalytic reactors measuring active surface area of photocatalyst within the unit is one of the critical design parameters. This dictate greatly limits the applicability of any semi-conductor photocatalyst in industrial applications, as a large surface area equates to a powder catalyst. This demonstration of a thin film coating, doped with a rare earth element, novel photoreactor design produces a photocatalytic degradation of a model pollutant (methyl orange) which displayed a comparable degradation achieved with P25 TiO2. The use of lanthanide doping is reported here in the titania sol gel as it is thought to increase the electron hole separation therefore widening the potential useful wavelengths within the electromagnetic spectrum. Increasing doping from 0.5% to 1.0% increased photocatalytic degradation by ∼17% under visible irradiation. A linear relationship has been seen between increasing reactor volume and degradation which would not normally be observed in a typical suspended reactor system. © 2012 Elsevier B.V.
Resumo:
Conventional differential scanning calorimetry (DSC) techniques are commonly used to quantify the solubility of drugs within polymeric-controlled delivery systems. However, the nature of the DSC experiment, and in particular the relatively slow heating rates employed, limit its use to the measurement of drug solubility at the drug's melting temperature. Here, we describe the application of hyper-DSC (HDSC), a variant of DSC involving extremely rapid heating rates, to the calculation of the solubility of a model drug, metronidazole, in silicone elastomer, and demonstrate that the faster heating rates permit the solubility to be calculated under non-equilibrium conditions such that the solubility better approximates that at the temperature of use. At a heating rate of 400 degrees C/min (HDSC), metronidazole solubility was calculated to be 2.16 mg/g compared with 6.16 mg/g at 20 degrees C/min. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A neural network based tool has been developed to assist in the process of code transformation. The tool offers advice on appropriate transformations within a knowledge-driven, semi-automatic parallelisation environment. We have identified the essential characteristics of codes relevant to loop transformations. A Kohonen network is used to discover structure in the characterised codes thus revealing new knowledge that may be brought to bear on the mapping between codes and transformations or transformation sequences. A transform selector based on this process has been developed and successfully applied to the parallelisation of sequential codes.
Resumo:
Purpose. This study examined the mechanical characteristics and release of tetracycline from bioadhesive, semi-solid systems which were designed for the treatment of periodontal diseases.
Resumo:
Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested.
Resumo:
In this paper we concentrate on the direct semi-blind spatial equalizer design for MIMO systems with Rayleigh fading channels. Our aim is to develop an algorithm which can outperform the classical training based method with the same training information used, and avoid the problems of low convergence speed and local minima due to pure blind methods. A general semi-blind cost function is first constructed which incorporates both the training information from the known data and some kind of higher order statistics (HOS) from the unknown sequence. Then, based on the developed cost function, we propose two semi-blind iterative and adaptive algorithms to find the desired spatial equalizer. To further improve the performance and convergence speed of the proposed adaptive method, we propose a technique to find the optimal choice of step size. Simulation results demonstrate the performance of the proposed algorithms and comparable schemes.