149 resultados para Semen parameters
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
BACKGROUND Diabetes mellitus (DM) is increasing in men of reproductive age. Despite this, the prevalence of diabetes in men attending fertility clinics is largely unknown. Furthermore, studies examining the effects of DM on sperm fertility potential have been limited to conventional semen analysis. METHODS Conventional semen analysis (semen volume, sperm count, motility and morphology) was performed for 27 diabetic (mean age 34 +/- 2 years) and 29 non-diabetic subjects (control group, men undergoing routine infertility investigations, mean age 33 +/- 1 years). Nuclear DNA (nDNA) fragmentation was assessed using the alkaline Comet assay and mitochondrial DNA (mtDNA) deletions by Long-PCR. RESULTS Other than a small, but significant, reduction in semen volume in diabetic men (2.6 versus 3.3 ml; P <0.05), conventional semen parameters did not differ significantly from control subjects. Diabetic subjects had significantly higher mean nDNA fragmentation (53 versus 32%; P <0.0001) and median number of mtDNA deletions (4 versus 3; P <0.05) compared with control subjects. CONCLUSIONS Diabetes is associated with increased sperm nuclear and mtDNA damage that may impair the reproductive capability of these men.
Resumo:
Objective: To evaluate sperm DNA fragmentation and semen parameters to diagnose male factor infertility and predict pregnancy after IVF.
Design: Prospective study.
Setting: Academic research laboratory.
Patient(s): Seventy-five couples undergoing IVF and 28 fertile donors.
Intervention(s): Sperm DNA fragmentation was measured by the alkaline Comet assay in semen and sperm after density gradient centrifugation (DGC). Binary logistic regression was used to analyze odds ratios (OR) and relative risks (RR) for IVF outcomes.
Main Outcome Measure(s): Semen parameters and sperm DNA fragmentation in semen and DGC sperm compared with fertilization rates, embryo quality, and pregnancy.
Result(s): Men with sperm DNA fragmentation at more than a diagnostic threshold of 25% had a high risk of infertility (OR: 117.33, 95% confidence interval [CI]: 12.72–2,731.84, RR: 8.75). Fertilization rates and embryo quality decreased as sperm DNA fragmentation increased in semen and DGC sperm. The risk of failure to achieve a pregnancy increased when sperm DNA fragmentation exceeded a prognostic threshold value of 52% for semen (OR: 76.00, CI: 8.69–1,714.44, RR: 4.75) and 42% for DGC sperm (OR: 24.18, CI: 2.89–522.34, RR: 2.16).
Conclusion(s): Sperm DNA testing by the alkaline Comet assay is useful for both diagnosis of male factor infertility and prediction of IVF outcome.
Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity
Resumo:
Objective: To investigate effects of cryopreservation on sperm motility and DNA integrity. Design: Pre-cryopreservation and post-cryopreservation analysis of motility and DNA integrity of semen and prepared sperm samples. Setting: A hospital andrology laboratory. Patient(s): Forty men attending the Regional Fertility Centre, Belfast, Northern Ireland. Intervention(s): Each sample was divided, and an aliquot was frozen unprepared. Remaining aliquots were prepared by Percoll density centrifugation (95.0:47.5) or direct swim-up procedure and divided into aliquots to allow direct comparison of fresh and frozen semen and prepared sperm (frozen with or without the addition of seminal plasma) from the same ejaculate. Samples were frozen by static-phase vapor cooling and being plunged into liquid nitrogen. Thawing was carried out at room temperature. Main Outcome Measure(s): Sperm DNA integrity was determined using a modified alkaline single cell gel electrophoresis (comet) assay, and motility was determined using computer-assisted semen analysis. Result(s): Sperm frozen unprepared in seminal fluid appeared more resistant to freezing damage than frozen prepared sperm. Further improvements can be achieved by selecting out the subpopulation of sperm with best motility and DNA integrity and freezing these sperm in seminal plasma, making this the optimal procedure. Conclusion(s): Freezing sperm in seminal plasma improves postthaw motility and DNA integrity.
Resumo:
The purpose of this study was to mathematically characterize the effects of defined experimental parameters (probe speed and the ratio of the probe diameter to the diameter of sample container) on the textural/mechanical properties of model gel systems. In addition, this study examined the applicability of dimensional analysis for the rheological interpretation of textural data in terms of shear stress and rate of shear. Aqueous gels (pH 7) were prepared containing 15% w/w poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone) (PVP) (0, 3, 6, or 9% w/w). Texture profile analysis (TPA) was performed using a Stable Micro Systems texture analyzer (model TA-XT 2; Surrey, UK) in which an analytical probe was twice compressed into each formulation to a defined depth (15 mm) and at defined rates (1, 3, 5, 8, and 10 mm s-1), allowing a delay period (15 s) between the end of the first and beginning of the second compressions. Flow rheograms were performed using a Carri-Med CSL2-100 rheometer (TA Instruments, Surrey, UK) with parallel plate geometry under controlled shearing stresses at 20.0°?±?0.1°C. All formulations exhibited pseudoplastic flow with no thixotropy. Increasing concentrations of PVP significantly increased formulation hardness, compressibility, adhesiveness, and consistency. Increased hardness, compressibility, and consistency were ascribed to enhanced polymeric entanglements, thereby increasing the resistance to deformation. Increasing probe speed increased formulation hardness in a linear manner, because of the effects of probe speed on probe displacement and surface area. The relationship between formulation hardness and probe displacement was linear and was dependent on probe speed. Furthermore, the proportionality constant (gel strength) increased as a function of PVP concentration. The relationship between formulation hardness and diameter ratio was biphasic and was statistically defined by two linear relationships relating to diameter ratios from 0 to 0.4 and from 0.4 to 0.563. The dramatically increased hardness, associated with diameter ratios in excess of 0.4, was accredited to boundary effects, that is, the effect of the container wall on product flow. Using dimensional analysis, the hardness and probe displacement in TPA were mathematically transformed into corresponding rheological parameters, namely shearing stress and rate of shear, thereby allowing the application of the power law (??=?k?n) to textural data. Importantly, the consistencies (k) of the formulations, calculated using transformed textural data, were statistically similar to those obtained using flow rheometry. In conclusion, this study has, firstly, characterized the relationships between textural data and two key instrumental parameters in TPA and, secondly, described a method by which rheological information may be derived using this technique. This will enable a greater application of TPA for the rheological characterization of pharmaceutical gels and, in addition, will enable efficient interpretation of textural data under different experimental parameters.
Resumo:
This study investigates the influence of process parameters on the fluidised hot melt granulation of lactose and PEG 6000, and the subsequent tablet pressing of the granules. Granulation experiments were performed to assess the effect of granulation time and binder content of the feed on the resulting granule properties such as mass mean granule size, size distribution, granule fracture stress, and granule porosity. These data were correlated using the granule growth regime model. It was found that the dominant granule growth mechanisms in this melt granulation system were nucleation followed by steady growth (PEG 10–20% w/w). However, with binder contents greater than 20% w/w, the granulation mechanism moved to the “over-wet massing” regime in which discrete granule formation could not be obtained. The granules produced in the melt fluidised bed process were subsequently pressed into tablets using an industrial tablet press. The physical properties of the tablets: fracture stress, disintegration time and friability were assessed using industry standards. These analyses indicated that particle size and binder content of the initial granules influenced the mechanical properties of the tablets. It was noted that a decrease in initial granule size resulted in an increase in the fracture stress of the tablets formed.