57 resultados para Seedling recruitment
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
1. Barnacles are a good model organism for the study of open populations with space-limited recruitment. These models are applicable to other species with open supply of new individuals and resource limitation. The inclusion of space in models leads to reductions in recruitment with increasing density, and thus predictions of population size and stability are possible. 2. Despite the potential generality of a demographic theory for open space-limited populations, the models currently have a narrow empirical base. In this study, a model for an open population with space-limited recruitment was extended to include size-specific survival and promotions to any size class. The assumptions of this model were tested using data from a pan-European study of the barnacle Chthamalus montagui Southward. Two models were constructed: a 6-month model and a periodic annual model. Predicted equilibria and their stabilities were compared between shores. 3. Tests of model assumptions supported the extension of the theory to include promotions to any size class. Mortality was found to be size-specific and density independent. Studied populations were open, with recruitment proportional to free space. 4. The 6-month model showed a significant interaction between time and location for equilibrium free space. This may have been due to contrasts in the timing of structuring processes (i.e. creating and filling space) between Mediterranean and Atlantic systems. Integration of the 6-month models into a periodic annual model removed the differences in equilibrium-free space between locations. 5. Model predictions show a remarkable similarity between shores at a European scale. Populations were persistent and all solutions were stable. This reflects the apparent absence of density-dependent mortality and a high adult survivorship in C. montagui. As populations are intrinsically stable, observations of fluctuations in density are directly attributable to variations in the environmental forcing of recruitment or mortality
Resumo:
We hypothesise that following a bone fracture there is systemic recruitment of bone forming cells to a fracture site. A rabbit ulnar osteotomy model was adapted to trace the movement of osteogenic cells. Bone marrow mesenchymal stem cells from 41 NZW rabbits were isolated, culture-expanded and fluorescently labelled. The labelled cells were either re-implanted into the fracture gap (Group A); into a vein (Group B); or into a remote tibial bone marrow cavity 48 h after the osteotomy (Group C) or 4 weeks before the osteotomy was established (Group D), and a control group (Group E) had no labelled cells given. To quantify passive leakage of cells to an injury site, inert beads were also co-delivered in Group B. Samples of the fracture callus tissue and various organs were harvested at discrete sacrifice time-points to trace and quantify the labelled cells. At 3 weeks following osteotomy, the number of labelled cells identified in the callus of Group C, was significantly greater than following IV delivery, Group B, and there was no difference in the number of labelled cells in the callus tissues, between Groups C and A, indicating the labelled bone marrow cells were capable of migrating to the fracture sites from the remote bone marrow cavity. Significantly fewer inert beads than labelled cells were identified in Group B callus, suggesting some of the bone-forming cells were actively recruited and selectively chosen to the fracture site, rather than passively leaked into the circulation and to bone injury site. This investigation supports the hypothesis that some osteoblasts involved in fracture healing were systemically mobilised and recruited to the fracture from remote bone marrow sites. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
The control of movement is predicated upon a system of constraints of musculoskeletal and neural origin. The focus of the present study was upon the manner in which such constraints are adapted or superseded during the acquisition of motor skill. Individuals participated in five experimental sessions, ill which they attempted to produce abduction-adduction movements of the index finger in time with an auditory metronome. During each trial, the metronome frequency was increased in eight steps from an individually determined base frequency. Electromyographic (EMC) activity was recorded from first dorsal interosseous (FDI), first volar interosseous (FVI), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) muscles. The movements produced on the final day of acquisition more accurately matched the required profile, and exhibited greater spatial and temporal stability, than those generated during initial performance. Tn the early stages of skill acquisition, an alternating pattern of activation in FDI and FVI was maintained, even at the highest frequencies. Tn contrast, as the frequency of movement was increased, activity in FDS and EDC was either tonic or intermittent. As learning proceeded, alterations in recruitment patterns were expressed primarily in the extrinsic muscles (EDC and FDS). These changes took the form of increases in the postural role of these muscles, shifts to phasic patterns of activation, or selective disengagement of these muscles. These findings suggest that there is considerable flexibility in the composition of muscle synergies, which is exploited by individuals during the acquisition of coordination.
Resumo:
Background Recruitment and retention of patients and healthcare providers in randomised controlled trials (RCTs) is important in order to determine the effectiveness of interventions. However, failure to achieve recruitment targets is common and reasons why a particular recruitment strategy works for one study and not another remain unclear. We sought to describe a strategy used in a multicentre RCT in primary care, to report researchers’ and participants’ experiences of its implementation and to inform future strategies to maximise recruitment and retention. Methods In total 48 general practices and 903 patients were recruited from three different areas of Ireland to a RCT of an intervention designed to optimise secondary prevention of coronary heart disease. The recruitment process involved telephoning practices, posting information, visiting practices, identifying potential participants, posting invitations and obtaining consent. Retention involved patients attending reviews and responding to questionnaires and practices facilitating data collection. Results We achieved high retention rates for practices (100%) and for patients (85%) over an 18-month intervention period. Pilot work, knowledge of the setting, awareness of change in staff and organisation amongst participant sites, rapid responses to queries and acknowledgement of practitioners’ contributions were identified as being important. Minor variations in protocol and research support helped to meet varied, complex and changing individual needs of practitioners and patients and encouraged retention in the trial. A collaborative relationship between researcher and practice staff which required time to develop was perceived as vital for both recruitment and retention. Conclusions Recruiting and retaining the numbers of practices and patients estimated as required to provide findings with adequate power contributes to increased confidence in the validity and generalisability of RCT results. A continuous dynamic process of monitoring progress within trials and tailoring strategies to particular circumstances, whilst not compromising trial protocols, should allow maximal recruitment and retention.
Resumo:
Reaching to visual targets engages the nervous system in a series of transformations between sensory information and motor commands. That which remains to be determined is the extent to which the processes that mediate sensorimotor adaptation to novel environments engage neural circuits that represent the required movement in joint-based or muscle-based coordinate systems. We sought to establish the contribution of these alternative representations to the process of visuomotor adaptation. To do so we applied a visuomotor rotation during a center-out isometric torque production task that involved flexion/extension and supination/pronation at the elbow-joint complex. In separate sessions, distinct half-quadrant rotations (i.e., 45°) were applied such that adaptation could be achieved either by only rescaling the individual joint torques (i.e., the visual target and torque target remained in the same quadrant) or by additionally requiring torque reversal at a contributing joint (i.e., the visual target and torque target were in different quadrants). Analysis of the time course of directional errors revealed that the degree of adaptation was lower (by ~20%) when reversals in the direction of joint torques were required. It has been established previously that in this task space, a transition between supination and pronation requires the engagement of a different set of muscle synergists, whereas in a transition between flexion and extension no such change is required. The additional observation that the initial level of adaptation was lower and the subsequent aftereffects were smaller, for trials that involved a pronation–supination transition than for those that involved a flexion–extension transition, supports the conclusion that the process of adaptation engaged, at least in part, neural circuits that represent the required motor output in a muscle-based coordinate system.