31 resultados para Sea Level Rise

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survival, growth, above ground biomass accumulation, soil surface elevation dynamics and nitrogen accumulation in accreted sediments were studied in experimental treatments planted with four different densities (6.96, 3.26, 1.93 and 0.95 seedlings m-2) of the mangrove Rhizophora mucronata in Puttalam Lagoon, Sri Lanka. Measurements were taken over a period of 1171 days and were compared with those from unplanted controls. Trees at the lowest density showed significantly reduced survival, whilst measures of individual tree growth did not differ significantly among treatments. Rates of surface sediment accretion (means ± S.E.) were 13.0 (±1.3), 10.5 (±0.9), 8.4 (±0.3), 6.9 (±0.5) and 5.7 (±0.3) mm yr-1 at planting densities of 6.96, 3.26, 1.93, 0.95, and 0 (unplanted control) seedlings m-2, respectively, showing highly significant differences among treatments. Mean (± S.E.) rates of surface elevation change were much lower than rates of accretion at 2.8 (±0.2), 1.6 (±0.1), 1.1 (±0.2), 0.6 (±0.2) and -0.3 (±0.1) mm yr-1 for 6.96, 3.26, 1.93, 0.95, and 0 seedlings m-2, respectively. All planted treatments appeared to accumulate greater nitrogen concentrations in the sediment compared to the unplanted control, and suggests one potential causal mechanism for the facilitatory effects observed; high densities of plants potentially contribute to the accretion of greater amounts of nutrient rich sediment. While this potential process needs further study, this study demonstrated how higher densities of mangroves enhance rates of sediment accretion and surface elevation, processes that may be crucial in mangrove ecosystem adaptation to sea level rise. There was no evidence that increasing plant density evoked a trade-off with growth and survival of the planted trees. Rather facilitatory effects enhanced survival at high densities, suggesting that local land managers may be able to take advantage of plantation densities to help mitigate sea-level rise effects by encouraging positive soil surface elevation increment, and perhaps even greater nutrient retention to promote mangrove growth and ameliorate nearshore eutrophication in tropical island environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence is presented from three estuarine tide gauges located in the
Sundarban area of southwest Bangladesh of relative sea level rise
substantially in excess of the generally accepted rates from altimetry, as
well as previous tide-gauge analyses. It is proposed that the difference
arises from the use of relative mean sea level (RMSL) to characterise the
present and future coastal flood hazard, since RMSL can be misleading in
estuaries in which tidal range is changing. Three tide gauges, one located in
the uninhabited mangrove forested area (Sundarban) of southwest
Bangladesh, the others in the densely populated polder zone north of the
present Sundarban, show rates of increase in RMSL ranging from 2.8 mm
a-1 to 8.8 mm a-1. However, these trends in RMSL disguise the fact that high
water levels in the polder zone have been increasing at an average rate of
15.9 mm a-1 and a maximum of 17.2 mm a-1. In an area experiencing tidal
range amplification, RMSL will always underestimate the rise in high water
levels; consequently, as an alternative to RMSL, the use of trends in high
water maxima or ‘Effective Sea Level Rise’ (ESLR) is adopted as a more
strategic parameter to characterise the flooding hazard potential. The rate
of increase in ESLR is shown to be due to a combination of deltaic
subsidence, including sediment compaction, and eustatic sea level rise, but
principally as a result of increased tidal range in estuary channels recently
constricted by embankments. These increases in ESLR have been partially
offset by decreases in fresh water discharge in those estuaries connected
to the Ganges. The recognition of increases of the effective sea level in the
Bangladesh Sundarban, which are substantially greater than increases in
mean sea level, is of the utmost importance to flood management in this
low-lying and densely populated area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positive deviations from linear sea-level trends represent important climate signals if they are persistent and geographically widespread. This paper documents rapid sea-level rise reconstructed from sedimentary records obtained from salt marshes in the Southwest Pacific region (Tasmania and New Zealand). A new late Holocene relative sea-level record from eastern Tasmania was dated by AMS(14)C (conventional, high precision and bomb-spike), Cs-137, Pb-210, stable Pb isotopic ratios, trace metals, pollen and charcoal analyses. Palaeosea-level positions were determined by foraminiferal analyses. Relative sea level in Tasmania was within half a metre of present sea level for much of the last 6000 yr. Between 1900 and 1950 relative sea level rose at an average rate of 4.2 +/- 0.1 mm/yr. During the latter half of the 20th century the reconstructed rate of relative sea-level rise was 0.7 +/- 0.6 mm/yr. Our study is consistent with a similar pattern of relative sea-level change recently reconstructed for southern New Zealand. The change in the rate of sea-level rise in the SW Pacific during the early 20th century was larger than in the North Atlantic and could suggest that northern hemisphere land-based ice was the most significant melt source for global sea-level rise. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new, diatom-based sea-level reconstruction for Iceland spanning the last -500 years, and investigate the possible mechanisms driving the sea-level changes. A sea-level reconstruction from near the Icelandic low pressure system is important as it can improve understanding of ocean-atmosphere forcing on North Atlantic sea-level variability over multi-decadal to centennial timescales. Our reconstruction is from Viarhólmi salt marsh in Snæfellsnes in western Iceland, a site from where we previously obtained a 2000-yr record based upon less precise sea-level indicators (salt-marsh foraminifera). The 20th century part of our record is corroborated by tide-gauge data from Reykjavik. Overall, the new reconstruction shows ca0.6m rise of relative sea level during the last four centuries, of which ca0.2m occurred during the 20th century. Low-amplitude and high-frequency sea-level variability is super-imposed on the pre-industrial long-term rising trend of 0.65m per 1000 years. Most of the relative sea-level rise occurred in three distinct periods: AD 1620-1650, AD 1780-1850 and AD 1950-2000, with maximum rates of ~3±2mm/yr during the latter two of these periods. Maximum rates were achieved at the end of large shifts (from negative to positive) of the winter North Atlantic Oscillation (NAO) Index as reconstructed from proxy data. Instrumental data demonstrate that a strong and sustained positive NAO (a deep Icelandic Low) generates setup on the west coast of Iceland resulting in rising sea levels. There is no strong evidence that the periods of rapid sea-level rise were caused by ocean mass changes, glacial isostatic adjustment or regional steric change. We suggest that wind forcing plays an important role in causing regional-scale coastal sea-level variability in the North Atlantic, not only on (multi-)annual timescales, but also on multi-decadal to centennial timescales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relative sea-level rise has been a major factor driving the evolution of reef systems during the Holocene. Most models of reef evolution suggest that reefs preferentially grow vertically during rising sea level then laterally from windward to leeward, once the reef flat reaches sea level. Continuous lagoonal sedimentation ("bucket fill") and sand apron progradation eventually lead to reef systems with totally filled lagoons. Lagoonal infilling of One Tree Reef (southern Great Barrier Reef) through sand apron accretion was examined in the context of late Holocene relative sea-level change. This analysis was conducted using sedimentological and digital terrain data supported by 50 radiocarbon ages from fossil microatolls, buried patch reefs, foraminifera and shells in sediment cores, and recalibrated previously published radiocarbon ages. This data set challenges the conceptual model of geologically continuous sediment infill during the Holocene through sand apron accretion. Rapid sand apron accretion occurred between 6000 and 3000 calibrated yr before present B.P. (cal. yr B.P.); followed by only small amounts of sedimentation between 3000 cal. yr B.P. and present, with no significant sand apron accretion in the past 2 k.y. This hiatus in sediment infill coincides with a sea-level fall of similar to 1-1.3 m during the late Holocene (ca. 2000 cal. yr B.P.), which would have caused the turn-off of highly productive live coral growth on the reef flats currently dominated by less productive rubble and algal flats, resulting in a reduced sediment input to back-reef environments and the cessation in sand apron accretion. Given that relative sea-level variations of similar to 1 m were common throughout the Holocene, we suggest that this mode of sand apron development and carbonate production is applicable to most reef systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolation basin records from the Seymour-Belize Inlet Complex, a remote area of central mainland British Columbia, Canada are used to constrain post-glacial sea-level changes and provide a preliminary basis for testing geophysical model predictions of relative sea-level (RSL) change. Sedimentological and diatom data from three low-lying (<4 m elevation) basins record falling RSLs in late-glacial times and isolation from the sea by ~11,800–11,200 14C BP. A subsequent RSL rise during the early Holocene (~8000 14C BP) breached the 2.13 m sill of the lowest basin (Woods Lake), but the two more elevated basins (sill elevations of ~3.6 m) remained isolated. At ~2400 14C BP, RSL stood at 1.49 ± 0.34 m above present MTL. Falling RSLs in the late Holocene led to the final emergence of the Woods Lake basin by 1604 ± 36 14C BP. Model predictions generated using the ICE-5G model partnered with a small number of different Earth viscosity models generally show poor agreement with the observational data, indicating that the ice model and/or Earth models considered can be improved upon. The best data-model fits were achieved with relatively low values of upper mantle viscosity (5 × 1019 Pa s), which is consistent with previous modelling results from the region. The RSL data align more closely with observational records from the southeast of the region (eastern Vancouver Island, central Strait of Georgia), than the immediate north (Bella Bella–Bella Coola and Prince Rupert-Kitimat) and areas to the north-west (Queen Charlotte Sound, Hecate Strait), underlining the complexity of the regional response to glacio-isostatic recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal and spatial patterns of relative sea level (RSL) change in the North of Britain and Ireland during the Holocene are examined. Four episodes, each defined by marked changes in the RSL trend, are identified. Each episode is marked by a rise to a culminating shoreline followed by a fall. Episode HRSL-1 dates from the Younger Dryas to early in the Holocene; HRSL-2 to HRSL-4 occurred later in the Holocene. There is extensive evidence for each episode, and on this basis the spatial distribution of the altitude data for three culminating shorelines and a shoreline formed at the time of the Holocene Storegga Slide tsunami (ca 8110 ± 100 cal. BP) is analysed. Ordinary Kriging is used to determine the general pattern, following which Gaussian Trend Surface Analysis is employed. Recognising that empirical measurements of RSL change can be unevenly distributed spatially, a new approach is introduced which enables the developing pattern to be identified. The patterns for the most widely occurring shorelines were analysed and found to be similar and common centre and axis models were developed for all shorelines. The analyses described provide models of the spatial pattern of Holocene RSL change in the area between ca 8100 cal. BP and ca 1000 cal. BP based on 2262 high resolution shoreline altitude measurements. These models fit the data closely, no shoreline altitude measurement lying more than −1.70 m or +1.82 m from the predicted value. The models disclose a similar pattern to a recently published Glacial Isostatic Adjustment model for present RSL change across the area, indicating that the overall spatial pattern of RSL change may not have varied greatly during the last ca 8000 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intercorrelation of palaeoclimate events from various studies is often hindered by a lack of precise chronological control. Tephra isochrons can overcome this problem by providing direct site linkages. This paper outlines a study of Holocene peat and diatomite deposits that accumulated within the floodplain of Lough Neagh, Northern Ireland. The Icelandic Hekla 4 tephra has been identified at the base of diatomite deposits at a number of sites and provides firm dating evidence for a widespread flooding event in the area at ca. 2300 BC. The evidence is consistent with other studies in Ireland and elsewhere for increased wetness at this time. The results demonstrate that the terrestrial deposits around Lough Neagh contain an important record of Holocene lake-level change. Dendrochronological evidence from the Lough Neagh area provides additional information about lake-level fluctuations over the past two millennia.

Relevância:

100.00% 100.00%

Publicador: