67 resultados para Schistosoma-mansoni

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many neuropeptide transmitters require the presence of a carboxy-terminal alpha-amide group for biological activity. Amidation requires conversion of a glycine-extended peptide intermediate into a C-terminally amidated product. This post-translational modification depends on the sequential action of two enzymes (peptidylglycine alpha-hydroxylating monooxygenase or PHM, and peptidyl-alpha-hydroxyglycine alpha-amidating lyase or PAL) that in most eukaryotes are expressed as separate domains of a single protein (peptidylglycine alpha-amidating monooxygenase or PAM). We identified a cDNA encoding PHM in the human parasite Schistosoma mansoni. Transient expression of schistosome PHM (smPHM) revealed functional properties that are different from other PHM proteins; smPHM displays a lower pH-optimum and, when expressed in mammalian cells, is heavily N-glycosylated. In adult worms, PHM is found in the trans-Golgi network and secretory vesicles of both central and peripheral nerves. The widespread occurrence of PHM in the nervous system confirms the important role of amidated neuropeptides in these parasitic flatworms. The differences between schistosome and mammalian PHM suggest that it could be a target for new chemotherapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blood flukes Schistosoma mansoni and Schistosoma japonicum inflict immense suffering as agents of human schistosomiasis. Previous investigations have found the nervous systems of these worms contain abundant immunoreactivity to antisera targeting invertebrate neuropeptide Fs (NPFs) as well as structurally similar neuropeptides of the mammalian neuropeptide Y (NPY) family. Here, cDNAs encoding NPF in these worms were identified, and the mature neuropeptides from the two species differed by only a single amino acid. Both neuropeptides feature the characteristics common among NPFs; they are 36 amino acids long with a carboxyl-terminal Gly-Arg-X-Arg-Phe-amide and Tyr residues at positions 10 and 17 from the carboxyl terminus. Synthetic S. mansoni NPF potently inhibits the forskolin-stimulated accumulation of cAMP in worm homogenates, with significant effects at 10(-11) M. This is the first demonstration of an endogenous inhibition of cAMP by an NPF, and because this is the predominant pathway associated with vertebrate NPY family peptides, it demonstrates a conservation of downstream signaling pathways used by NPFs and NPY peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the hypothesis that voltage-operated Ca2+ channels mediate an extracellular Ca2+ influx in muscle fibres from the human parasite Schistosoma mansoni and, along with Ca2+ mobilization from the sarcoplasmic reticulum, contribute to Muscle contraction. Indeed, whole-cell voltage clamp revealed voltage-gated inward currents carried by divalent ions with a peak current elicited by steps to + 20 mV (from a holding potential of -70 mV). Depolarization of the fibres by elevated extracellular K+ elicited contractions that were completely dependent on extracellular Ca2+ and inhibited by nicardipine (half inhibition at 4(.)1 mu M). However these contractions were not very sensitive to other classical blockers of voltage-gated Ca2+ channels, indicating that the schistosome Muscle channels have an atypical pharmacology when compared to their mammalian counterparts. Furthermore, the contraction induced by 5 mM caffeine was inhibited after depletion of the sarcoplasmic reticulum either with thapsigargin (10 mu M) or ryanodine (10 mu M). These data suggest that voltage-operated Ca2+ channels docontribute to S. mansoni contraction as does the mobilization of stored Ca2+, despite the small volume of sarcoplasmic reticulum in schistosome smooth muscles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An array of schistosome endoproteases involved in the digestion of host hemoglobin to absorbable peptides has been described, but the exoprotease responsible for catabolising these peptides to amino acids has yet to be identified. By searching the public databases we found that Schistosoma mansoni and Schistosoma japonicum express a gene encoding a member of the M17 family of leucine aminopeptidases (LAPs). A functional recombinant S. mansoni LAP produced in insect cells shared biochemical properties, including pH optimum for activity, substrate specificity and reliance on metal cations for activity, with the major aminopeptidase activity in soluble extracts of adult worms. The pH range in which the enzyme functions and the lack of a signal peptide indicate that the enzyme functions intracellularly. Immunolocalisation studies showed that the S. mansoni LAP is synthesised in the gastrodermal cells surrounding the gut lumen. Accordingly, we propose that peptides generated in the lumen of the schistosome gut are absorbed into the gastrodermal cells and are cleaved by LAP to free amino acids before being distributed to the internal tissues of the parasite. Since LAP was also localised to the surface tegument it may play an additional role in surface membrane re-modelling. (C) 2004 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has previously been postulated that L-arginine emitted by penetrating Schistosoma mansoni cercariae serves as an intraspecific signal guiding other cercariae to the penetration site. It was suggested that penetrating in groups offers a selective advantage. If this hypothesis is correct and group penetration at one site on the host offers an advantage, it would follow that at such a site, successive groups of cercariae would be able to penetrate skin in either greater numbers or at a faster rate. This prediction was tested by the use of an in vitro model of cercarial penetration based on the Franz cell and using human skin. It was demonstrated that there was no increase in the percentage of cercariae able to penetrate the skin with subsequent exposures. Consequently, it seems unlikely that the release of L-arginine by cercariae during penetration could have evolved as a specific orientation system based on a selective advantage offered by group penetration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have observed that when cercariae penetrate the skin of mice, there is influx into their tissues of Lucifer Yellow and certain labelled molecules of up to 20 kDa molecular weight. This observation was made using a variety of fluorescent membrane-impermeant compounds injected into the skin before the application of cercariae. This unexpected phenomenon was investigated further by transforming cercariae in vitro in the presence of the membrane-impermeant compounds and examining the distribution by microscopy. In schistosomula derived from this procedure, the nephridiopore and surface membrane were labelled while the pre- and post-acetabular glands were not labelled. The region associated with the oesophagus within the pharyngeal muscle clearly contained the fluorescent molecules, as did the region adjacent to the excretory tubules and the germinal mass. We used cercariae stained with carmine to aid identification of regions labelled with Lucifer Yellow. Although the mechanism of this influx is unclear, the observation is significant. From it, we can suggest an hypothesis that, during skin penetration, exposure of internal tissues of the parasite to external macromolecules represents a novel host-parasite interface.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background

G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum.

Results

Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification.

Conclusions

Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excretory secretory products (ESP) of Schistosoma mansoni developing larvae are ideal potential vaccines as such molecules may readily induce host primary immune responses, and local memory immune response effectors that would target, surround, and pursue the larvae while negotiating the lung blood capillaries. We herein characterized the cytokines response ESP, e.g., SG3PDH, 14-3-3-like protein, TPX, and calpain induce in the natural context of infection, and defined the global cytokine profile conducive to effective schistosome larvae killing. Accordingly, spleen cells (SC) taken from naive, and 7-, or 9-day S. mansoni-infected mice were stimulated in vitro with the selected ESP, in a recombinant or multiple antigen peptide (MAP) form, and examined for production of T helper type (Th) 1, Th2, and Th17 cytokines, and the ability to mediate in vitro attrition of lung-stage schistosomula. The study indicated that larval ESP principally elicit Th1 and Th17 type cytokines. Recombinant SG3PDH was the only test ESP to additionally activate SC from S. mansoni-infected BALB/c mice to release higher IL-4 levels than unstimulated SC and mediate significant (P