26 resultados para Saul Kripke
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This research presents the development of an analytical model to predict the elastic stiffness performance of orthogonal interlock bound 3D woven composites as a consequence of altering the weaving parameters and constituent material types. The present approach formulates expressions at the micro level with the aim of calculating more representative volume fractions of a group of elements to the layer. The rationale in representing the volume fractions within the unit cell more accurately was to improve the elastic stiffness predictions compared to existing analytical modelling approaches. The models developed in this work show good agreement between experimental data and improvement on existing predicted values by models published in literature.
Resumo:
The three-dimensional (3D) weaving process offers the ability to tailor the mechanical properties via design of the weave architecture. One repeat of the 3D woven fabric is represented by the unit cell. The model accepts basic weaver and material manufacturer data as inputs in order to calculate the geometric characteristics of the 3D woven unit cell. The specific weave architecture manufactured and subsequently modelled had an angle interlock type binding configuration. The modelled result was shown to have a close approximation compared to the experimentally measured values and highlighted the importance of the representation of the binder tow path.
Resumo:
This article investigates the damage imparted on load-bearing carbon fibers during the 3D weaving process and the subsequent compaction behavior of 3D woven textile preforms. The 3D multi-layer reinforcements were manufactured on a textile loom with few mechanical modifications to produce preforms with fibers orientated in the warp, weft, and through-the-thickness directions. Tensile tests were conducted on three types of commercially available carbon fibers, 12k HTA, 6k HTS, and 3k HTS in an attempt to quantify the effect of fiber damage induced during the 3D weaving process on the mechanical and physical performance of the fiber tows in the woven composite. The tests were conducted on fiber tows sampled from different locations in the manufacturing process from the bobbin, through the creel and loom mechanism, to the final woven fabric. Mechanical and physical testing were then conducted to quantify the tow geometry, orientation and the effect of compaction during manufacture of two styles of 3D woven composite by vacuumassisted resin transfer molding (VaRTM).
Resumo:
An analytical modeling approach for the prediction of the geometric characteristics of five-dimensional (5D) woven composites has been formulated. The model is driven by readily available data including the weaving parameters and constituent material properties. The new model calculates the individual proportions of fiber in each direction, areal density, overall fiber volume fraction, and laminate thickness. This information is useful for the engineer in the design and manufacture of 5D woven composites. In addition the present model outputs the mathematical definition of the 5D woven composite unit cell, which could be implemented as the geometric input for a downstream analytical model that is capable of predicting the elastic stiffness of 5D woven composites. Input parameters have been sourced from existing published work and the subsequent predictions made by the model are compared with the available experimental data on 5D woven composites.