38 resultados para Satellites of asteroids

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absolute magnitude (H) of an asteroid is a fundamental parameter describing the size and the apparent brightness of the body. Because of its surface shape, properties and changing illumination, the brightness changes with the geometry and is described by the phase function governed by the slope parameter (G). Although many years have been spent on detailed observations of individual asteroids to provide H and G, vast majority of minor planets have H based on assumed G and due to the input photometry from multiple sources the errors of these values are unknown. We compute H of ~ 180 000 and G of few thousands asteroids observed with the Pan-STARRS PS1 telescope in well defined photometric systems. The mean photometric error is 0.04 mag. Because on average there are only 7 detections per asteroid in our sample, we employed a Monte Carlo (MC) technique to generate clones simulating all possible rotation periods, amplitudes and colors of detected asteroids. Known asteroid colors were taken from the SDSS database. We used debiased spin and amplitude distributions dependent on size, spectral class distributions of asteroids dependent on semi-major axis and starting values of G from previous works. H and G (G12 respectively) were derived by phase functions by Bowell et al. (1989) and Muinonen et al. (2010). We confirmed that there is a positive systematic offset between H based on PS1 asteroids and Minor Planet Center database up to -0.3 mag peaking at 14. Similar offset was first mentioned in the analysis of SDSS asteroids and was believed to be solved by weighting and normalizing magnitudes by observatory codes. MC shows that there is only a negligible difference between Bowell's and Muinonen's solution of H. However, Muinonen's phase function provides smaller errors on H. We also derived G and G12 for thousands of asteroids. For known spectral classes, slope parameters agree with the previous work in general, however, the standard deviation of G in our sample is twice as larger, most likely due to sparse phase curve sampling. In the near future we plan to complete the H and G determination for all PS1 asteroids (500,000) and publish H and G values online. This work was supported by NASA grant No. NNX12AR65G.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the study of absolute magnitude (H) and slope parameter (G) of 170,000 asteroids observed by the Pan-STARRS1 telescope during the period of 15 months within its 3-year all-sky survey mission. The exquisite photometry with photometric errors below 0.04 mag and well-defined filter and photometric system allowed to derive H and G with statistical and systematic errors. Our new approach lies in the Monte Carlo technique simulating rotation periods, amplitudes, and colors, and deriving most-likely H, G and their systematic errors. Comparison of H_M by Muinonen's phase function (Muinonen et al., 2010) with the Minor Planet Center database revealed a negative offset of 0.22±0.29 meaning that Pan-STARRS1 asteroids are fainter. We showed that the absolute magnitude derived by Muinonen's function is systematically larger on average by 0.14±0.29 and by 0.30±0.16 when assuming fixed slope parameter (G=0.15, G_{12}=0.53) than Bowell's absolute magnitude (Bowell et al., 1989). We also derived slope parameters of asteroids of known spectral types and showed a good agreement with the previous studies within the derived uncertainties. However, our systematic errors on G and G_{12} are significantly larger than in previous work, which is caused by poor temporal and phase coverage of vast majority of the detected asteroids. This disadvantage will vanish when full survey data will be available and ongoing extended and enhanced mission will provide new data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims. The aim of this work is to constrain the size, composition and surface properties of asteroids (2867) Steins and (21) Lutetia, targets of the Rosetta mission. Rosetta is en route to rendezvous with comet 67P/Churyumov-Gerasimenko.

Methods. Thermal-Infrared N-band observations for Lutetia and Steins were obtained using, respectively, TIMMI2 on the ESO 3.6-m telescope at La Silla and VISIR at the UT3 VLT telescope on Cerro Paranal; visible light curves for Steins were obtained using NTT+SUSI2, while R-band photometry for Lutetia was obtained with the 2.0-m Faulkes Telescope North on Haleakala. For Steins, the NEATM model was used to constrain its visible geometric albedo and beaming parameter. A detailed thermophysical model was implemented and used to analyze our set of observations of Lutetia as well as previous reported measurements.

Results. The visible photometry of Steins was used along with data from the literature to yield a slope parameter of G=0.32(-0.11)(+0.14). Problems during the observations led to the loss of measurements on two of the three N-band filters requested for Steins. Using the remaining data and the polarimetric albedo recently published, we were able to constrain the thermal beaming parameter as eta > 1.2, which is more similar to near-Earth asteroids and suggests either high thermal inertia or a very rough surface. For Lutetia, the best fit visible geometric albedo obtained with our model and the reported observation is p(nu)=0.129, significantly lower than that obtained if one applies the same model to previously reported measurements. The discrepancy cannot be explained solely by assuming inhomogeneities in the surface properties and we suggest that the most plausible explanation is the presence of one or more large craters on the northern hemisphere. For both sets of measurements, the implied single scattering albedo of Lutetia is compatible with laboratory measurements of carbonaceous chondrite meteorites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Yarkovsky (orbital drift) and YORP (altering spin state) effects are important mechanisms governing the evolution of asteroids. We have included global-selfheating into a new model and demonstrate that it significantly affects YORP predictions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rotational state of asteroids is controlled by various physical mechanisms including collisions, internal damping and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. We have analysed the changes in magnitude between consecutive detections of ∼ 60,000 asteroids measured by the PanSTARRS 1 survey during its first 18 months of operations. We have attempted to explain the derived brightness changes physically and through the application of a simple model. We have found a tendency toward smaller magnitude variations with decreasing diameter for objects of 1 < D < 8 km. Assuming the shape distribution of objects in this size range to be independent of size and composition our model suggests a population with average axial ratios 1: 0.85 ± 0.13: 0.71 ± 0.13, with larger objects more likely to have spin axes perpendicular to the orbital plane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves >99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a nonphysical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss, and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains highly efficient at detecting objects but drops to 80% efficiency at producing orbits. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have calculated 90% confidence limits on the steady-state rate of catastrophic disruptions of main belt asteroids in terms of the absolute magnitude at which one catastrophic disruption occurs per year  as a function of the post-disruption increase in brightness (Δm) and subsequent brightness decay rate (τ  ). The confidence limits were calculated using the brightest unknown main belt asteroid (V=18.5) detected with the Pan-STARRS1 (Pan-STARRS1) telescope. We measured the Pan-STARRS1’s catastrophic disruption detection efficiency over a 453-day interval using the Pan-STARRS moving object processing system (MOPS) and a simple model for the catastrophic disruption event’s photometric behavior in a small aperture centered on the catastrophic disruption event. We then calculated the  contours in the ranges from  and  encompassing measured values from known cratering and disruption events and our model’s predictions. Our simplistic catastrophic disruption model suggests that  and  which would imply that H0≳28—strongly inconsistent withH0,B2005=23.26±0.02 predicted by Bottke et al. (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H.F. [2005]. Icarus, 179, 63–94.) using purely collisional models. However, if we assume that H0=H0,B2005 our results constrain , inconsistent with our simplistic impact-generated catastrophic disruption model. We postulate that the solution to the discrepancy is that >99% of main belt catastrophic disruptions in the size range to which this study was sensitive (∼100 m) are not impact-generated, but are instead due to fainter rotational breakups, of which the recent discoveries of disrupted asteroids P/2013 P5 and P/2013 R3 are probable examples. We estimate that current and upcoming asteroid surveys may discover up to 10 catastrophic disruptions/year brighter than V=18.5.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well known that the absolute magnitudes (H) in the MPCORB and ASTORB orbital element catalogs suffer from a systematic offset. Juric at al. (2002) found 0.4 mag offset in the SDSS data and detailed light curve studies of WISE asteroids by Pravec et al. (2012) revealed size-dependent offsets of up to 0.5 mag. The offsets are thought to be caused by systematic errors introduced by earlier surveys using different photometric catalogs and filters. The next generation asteroid surveys provide an order of magnitude more asteroids and well-defined and calibrated magnitudes. The Pan-STARRS 1 telescope (PS1) has observed hundreds of thousands asteroids, submitted more than 2 million detections to the Minor Planet Center (MPC) and discovered almost 300 NEOs since the beginning of operations in late 2010. We transformed the observed apparent magnitudes of PS1-detected asteroids from the gP1,rP1,iP1,yP1,zP1 and wP1-bands into Johnson photometric system by assuming the mean S and C-type asteroid color (Fitzsimmons 2011 - personal communication, Schlafly et al. 2012, Magnier et al. 2012 - in preparation) and calculated the absolute magnitude (H) in the V-band and its uncertainty (Bowell et al., 1989) for more than 200,000 known asteroids having on average 6.7 detections per object. The H error with respect to the MPCORB catalog revealed a mean offset of -0.49+0.30 mag in good agreement with published values. We will also discuss the statistical and systematical errors in H and slope parameter G.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present VLT+VISIR mid-IR observations of fast-rotating near-Earth asteroids. Diameters and albedos are determined with thermal models. These NEAs may have unusual surface properties, e.g. from regolith transport/stripping due to the YORP effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of BVRIZ photometry of 56 near-Earth objects (NEOs) obtained with the 1-m Jacobus Kapteyn telescope on La Palma during 2000 and 2001. Our sample includes many NEOs with particularly deep 1 - mum pyroxene/olivine absorption bands, similar to Q-type asteroids. We also classify three NEOs with particularly blue colors. No D-type asteroids were found, placing an upper limit of similar to2% on the fraction of the NEO population originating in the outer main belt or the Trojan clouds. The ratio of dark to bright objects in our sample was found to be 0.40, significantly higher than current theoretical predictions. As well as classifying the NEOs, we have investigated color trends with size and orbit. We see a general trend for larger silicate objects to have shallower absorption bands but find no significant difference in the distribution of taxonomic classes at small and large sizes. Our data clearly show that different taxonomic classes tend to occupy different regions of (a, e) space. By comparing our data with current model predictions for NEO dynamical evolution we see that Q- R-, and V-type NEOs tend to have orbits associated with "fast track" delivery from the main belt, whereas S-type NEOs tend to have orbits associated with "slow track" delivery. This outcome would be expected if space weathering occurs on time scales of >10(6) years. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed at JPL to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections. The ions are produced by the JPL HCI Facility and passed through a neutral-gas target cell. The product charge states are analyzed by a retarding potential difference technique. Results are made absolute by measuring target pressure, and incident and product ion currents. X-rays emitted from the product ions are detected with a Ge solid-state detector having a resolution of approximately 100 eV. X-ray astronomy has taken major steps forward with the recent launch of the high-resolution satellites Chandra and Newton. The cross sections reported herein are essential for the development of the solar wind comet interaction models inspired by these observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the absence of a firm link between individual meteorites and their asteroidal parent bodies, asteroids are typically characterized only by their light reflection properties, and grouped accordingly into classes. On 6 October 2008, a small asteroid was discovered with a flat reflectance spectrum in the 554-995nm wavelength range, and designated 2008 TC3 (refs 4-6). It subsequently hit the Earth. Because it exploded at 37km altitude, no macroscopic fragments were expected to survive. Here we report that a dedicated search along the approach trajectory recovered 47 meteorites, fragments of a single body named Almahata Sitta, with a total mass of 3.95kg. Analysis of one of these meteorites shows it to be an achondrite, a polymict ureilite, anomalous in its class: ultra-fine-grained and porous, with large carbonaceous grains. The combined asteroid and meteorite reflectance spectra identify the asteroid as F class, now firmly linked to dark carbon-rich anomalous ureilites, a material so fragile it was not previously represented in meteorite collections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman satellites have been observed in the scattering of a Nd:YAG laser (532 nm) from a laser-ablated Mg plasma plume. We identify them as originating from transitions between the fine-structure components of the metastable 3s3p P-3(0,1,2) level of Mg. We have calculated the cross sections for Raman and Rayleigh scattering from the metastable state. Comparison of the expected ratio of the satellites to the Rayleigh peak indicates the changing population fraction of the metastable states in the plume.