40 resultados para SURFACE PHASE-TRANSITIONS

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the potassium fractional coverage of a cobalt {1010BAR} surface is increased over the range 0.2 to 0.6 monolayer the adlayer passes through a series of phase transitions. A commensurate phase is formed at exactly 0.5 monolayer, and corresponds to adatoms bonded in high-symmetry hollow sites on the unreconstructed cobalt surface, with an effective adatom radius lying between the ionic and covalent radii of potassium. A detailed structural study shows that the structural transitions can be characterised within a one-dimensional Frenkel-Kontorova model, with small lateral displacements of adatoms away from hollow sites in the low and high coverage phases. The low coverage phases progress from a distributed vacancy structure to a low density domain-wall structure; while the high coverage phase formed above half a monolayer is a high density asymmetric domain-wall structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A force field model of phosphorus has been developed based on density functional (DF) computations and experimental results, covering low energy forms of local tetrahedral symmetry and more compact (simple cubic) structures that arise with increasing pressure. Rules tailored to DF data for the addition, deletion, and exchange of covalent bonds allow the system to adapt the bonding configuration to the thermodynamic state. Monte Carlo simulations in the N-P-T ensemble show that the molecular (P-4) liquid phase, stable at low pressure P and relatively low temperature T, transforms to a polymeric (gel) state on increasing either P or T. These phase changes are observed in recent experiments at similar thermodynamic conditions, as shown by the close agreement of computed and measured structure factors in the molecular and polymer phases. The polymeric phase obtained by increasing pressure has a dominant simple cubic character, while the polymer obtained by raising T at moderate pressure is tetrahedral. Comparison with DF results suggests that the latter is a semiconductor, while the cubic form is metallic. The simulations show that the T-induced polymerization is due to the entropy of the configuration of covalent bonds, as in the polymerization transition in sulfur. The transition observed with increasing P is the continuation at high T of the black P to arsenic (A17) structure observed in the solid state, and also corresponds to a semiconductor to metal transition. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ba0.5Sr0.5TiO3 (BST) thin-film capacitor structures with various thicknesses, (50-1200 nm) and different strain conditions (on lanthanum strontium cobalt oxide La0.5Sr0.5CoO3 and strontium ruthenate SrRuO3 buffer layers) were made using pulsed laser deposition, and characterized by x-ray diffraction. The out-of-plane lattice parameter was followed as a function of temperature within the 100-300 K temperature interval. The phase sequence (cubic-tetragonal-orthorhombic-rhombohedral) known to exist in the bulk analog is shown to be strongly affected by both the stress conditions imposed by the buffer layer and the thickness of the BST film itself. Thus, no phase transition was found for the in-plane compressed BST films. On the stress-free BST films, on the contrary, more phase transitions were observed. It appeared that the complexity of structural phase transitions increased as the film thickness in this system was reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chain of singly charged particles, confined by a harmonic potential, exhibits a sudden transition to a zigzag configuration when the radial potential reaches a critical value, depending on the particle number. This structural change is a phase transition of second order, whose order parameter is the crystal displacement from the chain axis. We study analytically the transition using Landau theory and find full agreement with numerical predictions by Schiffer [Phys. Rev. Lett. 70, 818 (1993)] and Piacente [Phys. Rev. B 69, 045324 (2004)]. Our theory allows us to determine analytically the system's behavior at the transition point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The entanglement spectrum describing quantum correlations in many-body systems has been recently recognized as a key tool to characterize different quantum phases, including topological ones. Here we derive its analytically scaling properties in the vicinity of some integrable quantum phase transitions and extend our studies also to nonintegrable quantum phase transitions in one-dimensional spin models numerically. Our analysis shows that, in all studied cases, the scaling of the difference between the two largest nondegenerate Schmidt eigenvalues yields with good accuracy critical points and mass scaling exponents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecularly adsorbed CO on Pd{110} has been shown (R. Raval et al., Chem. Phys. Lett. 167 (1990) 391, ref. [1]) to induce a substantial reconstruction of the surface in the coverage range 0.3 <theta less-than-or-equal-to 0.75. Throughout this coverage range, the adsorbate-covered reconstructed surface exhibits a (4 x 2) LEED pattern. However, the exact nature of the reconstruction remains uncertain. We have conducted a LEED I(E) "fingerprinting" analysis of the CO/Pd{110}-(4 x 2) structure in order to establish the type of reconstruction induced in the metal surface. This study shows that the LEED I(E) profiles of the integral order and appropriate half-order beams of the CO/Pd{110}-(4 x 2) pattern closely resemble the I(E) profiles theoretically calculated for a Pd{110}-(1 x 2) missing-row structure. Additionally, there is a strong resemblance to the experimental LEED I(E) profiles for the Cs/Pd{110}-(1 x 2) structure which has also been shown to exhibit the missing-row structure. On the basis of this evidence we conclude that the CO/Pd{110}-(4 x 2) LEED pattern arises from a missing-row reconstruction of the Pd{110} surface which gives rise to a strong underlying (1 x 2) pattern plus a poorly ordered CO overlayer which produces weak, diffuse fourth-order spots in the LEED pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electroless Ni–P (EN) and composite Ni–P–SiC (ENC) coatings were developed on cast aluminium alloy substrate, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni–P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni–Si phase was observed up to 500 °C of heat treatment. The microhardness is increased on incorporation of SiC in Ni–P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The functional properties of two types of barium strontium titanate (BST) thin film capacitor structures were studied: one set of structures was made using pulsed-laser deposition (PLD) and the other using chemical solution deposition. While initial observations on PLD films looking at the behavior of T-m (the temperature at which the maximum dielectric constant was observed) and T-c(*) (from Curie-Weiss analysis) suggested that the paraelectric-ferroelectric phase transition was progressively depressed in temperature as BST film thickness was reduced, further work suggested that this was not the case. Rather, it appears that the temperatures at which phase transitions occur in the thin films are independent of film thickness. Further, the fact that in many cases three transitions are observable, suggests that the sequence of symmetry transitions that occur in the thin films are the same as in bulk single crystals. This new observation could have implications for the validity of the theoretically produced thin film phase diagrams derived by Pertsev [Phys. Rev. Lett. 80, 1988 (1998)] and extended by Ban and Alpay [J. Appl. Phys. 91, 9288 (2002)]. In addition, the fact that T-m measured for virgin films does not correlate well with the inherent phase transition behavior, suggests that the use of T-m alone to infer information about the thermodynamics of thin film capacitor behavior, may not be sufficient. (C) 2004 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electroless nickel (EN) coatings are recognised for their hardness and wear resistance in automotive and aerospace industries. In this work, electroless Ni–P coatings were deposited on aluminium alloy substrate LM24 (Al–9 wt.% Si alloy) and the effect of post treatment on the wear resistance was studied. The post treatments included heat treatment and lapping with two different surface textures. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and micro-abrasion tester were used to analyse morphology, structure and abrasive wear resistance of the coatings. Post heat treatment significantly improved the coating density and structure, giving rise to enhanced hardness and wear resistance. Microhardness of electroless Ni–P coatings with thickness of about 15 μm increased due to the formation of Ni3P after heat treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe extensive studies on a family of perovskite oxides that are ferroelectric and ferromagnetic at ambient temperatures. The data include x-ray diffraction, Raman spectroscopy, measurements of ferroelectric and magnetic hysteresis, dielectric constants, Curie temperatures, electron microscopy
(both scanning electron microscope and transmission electron microscopy (TEM)) studies, and both longitudinal and transverse magnetoelectric constants a33 and a31. The study extends earlier work to lower Fe, Ta, and Nb concentrations at the B-site (from 15%–20% down to 5%). The magnetoelectric
constants increase supralinearly with Fe concentrations, supporting the earlier conclusions of a key role for Fe spin clustering. The room-temperature orthorhombic C2v point group symmetry inferred from earlier x-ray diffraction studies is confirmed via TEM, and the primitive unit cell size is found to be the basic perovskite Z¼1 structure of BaTiO3, also the sequence of phase transitions with increasing temperature from rhombohedral to orthorhombic to tetragonal to cubic mimics barium titanate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic switching spectroscopy piezoresponse force microscopy is developed to separate thermodynamic and kinetic effects in local bias-induced phase transitions. The approaches for visualization and analysis of five-dimensional data are discussed. The spatial and voltage variability of relaxation behavior of the a-c domain lead zirconate-titanate surface suggest the interpretation in terms of surface charge dynamics. This approach is applicable to local studies of dynamic behavior in any system with reversible bias-induced phase transitions ranging from ferroelectrics and multiferroics to ionic systems such as batteries, fuel cells, and electroresistive materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590919]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High-performance piezoelectrics are lead-based solid solutions that exhibit a so-called morphotropic phase boundary, which separates two competing phases as a function of chemical composition; as a consequence, an intermediate low-symmetry phase with a strong piezoelectric effect arises. In search for environmentally sustainable lead-free alternatives that exhibit analogous characteristics, we use a network of competing domains to create similar conditions across thermal inter-ferroelectric transitions in simple, lead-free ferroelectrics such as BaTiO 3 and KNbO 3. Here we report the experimental observation of thermotropic phase boundaries in these classic ferroelectrics, through direct imaging of low-symmetry intermediate phases that exhibit large enhancements in the existing nonlinear optical and piezoelectric property coefficients. Furthermore, the symmetry lowering in these phases allows for new property coefficients that exceed all the existing coefficients in both parent phases. Discovering the thermotropic nature of thermal phase transitions in simple ferroelectrics thus presents unique opportunities for the design of 'green' high-performance materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We provide insight into the quantum correlations structure present in strongly correlated systems beyond the standard framework of bipartite entanglement. To this aim we first exploit rotationally invariant states as a test bed to detect genuine tripartite entanglement beyond the nearest neighbor in spin-1/2 models. Then we construct in a closed analytical form a family of entanglement witnesses which provides a sufficient condition to determine if a state of a many-body system formed by an arbitrary number of spin-1/2 particles possesses genuine tripartite entanglement, independently of the details of the model. We illustrate our method by analyzing in detail the anisotropic XXZ spin chain close to its phase transitions, where we demonstrate the presence of long-range multipartite entanglement near the critical point and the breaking of the symmetries associated with the quantum phase transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pulsed Laser Deposition (PLD) was used to make Au/(Ba0.5Sr0.5)TiO3/(La0.5Sr0.5) CoO3/MgO thin film capacitor structures. Functional properties were studied with changing BST thickness from similar to1265 nm to similar to63 nm. The dielectric constant was found to decrease, and migration of T-m (the temperature at which the dielectric constant is maximum) to lower temperatures occurred as thickness was reduced. Curie-Weiss plots of the as-obtained dielectric data, indicated that the Curie temperature was also systemmatically progressively depressed. Further, fitting to expressions previously used to describe diffuse phase transitions suggested increased diffuseness in transformation behaviour as film thickness decreased. This paper discusses the care needed in interpreting the observations given above. We make particular distinction between the apparent Curie-temperature derived from Curie-Weiss plots of as-measured data, and the inherent Curie temperature determined after correction for the interfacial capacitance. We demonstrate that while the apparent Curie temperature decreases as thickness decreases, the inherent Curie temperature is thickness independent. Thickness-invariant phase transition behaviour is confirmed from analysis of polarisation loops, and from examination of the temperature dependence of the loss-tangent. We particularly note that correction of data for interfacial capacitance does not alter the position of T-m. We must therefore conclude that the position of T-m is not related simply to phase transformation behaviour in BST thin films.