22 resultados para STEREOCHEMISTRY
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Rhizopus delemar lipase catalyzed ester hydrolysis of the alpha-methoxy-beta-phenylpropanoate (I) affords the (R)-(+) and (S)-(-) isomers in > 84% enantiomeric excess. Abs. stereochem. was detd. by a single crystal X-ray anal. of a related synthetic analog. The activity of these two enantiomers on glucose transport in vitro and as anti-diabetic agents in vivo is reported and their unexpected equivalence attributed to an enzyme-mediated stereospecific isomerization of the (R)-(+) isomer. Binding studies using recombinant human PPAR-gamma (peroxisomal proliferator activated receptor gamma), now established as a mol. target for this compd. class, indicate a 20-fold higher binding affinity for the (S) antipode relative to the (R) antipode.
Resumo:
Biotransformation of 3-substituted and 2,5-disubstituted phenols, using whole cells of P. putida UV4, yielded cyclohexenone cis-diols as single enantiomers; their structures and absolute configurations have been determined by NMR and ECD spectroscopy, X-ray crystallography, and stereochemical correlation involving a four step chemoenzymatic synthesis from the corresponding cis-dihydrodiol metabolites. An active site model has been proposed, to account for the formation of enantiopure cyclohexenone cis-diols with opposite absolute configurations.
Resumo:
A unified total synthesis of the GRP78-downregulator(+)-prunustatin A and the immunosuppressant(+)-SW-163A based upon [1 + 1 + 1 + 1]-fragment condensationand macrolactonization between O(4) and C(5) is hereindescribed. Sharpless asymmetric dihydroxylation was used toset the C(2) stereocenter present in both targets. In like fashion,coupling of the (+)-prunustatin A macrolide amine with benzoicacid furnished a JBIR-04 diastereoisomer whose NMR spectradid not match those of JBIR-04, thus confirming that it hasdifferent stereochemistry than (+)-prunustatin A.
Resumo:
A high-resolution crystal structure is reported for d(TpA)*, the intramolecular thymine–adenine photoadduct that is produced by direct ultraviolet excitation of the dinucleoside monophosphate d(TpA). It confirms the presence of a central 1,3-diazacyclooctatriene ring linking the remnants of the T and A bases, as previously deduced from heteronuclear NMR measurements by Zhao et al. (The structure of d(TpA)*, the major photoproduct of thymidylyl-(3'-5')-deoxyadenosine. Nucleic Acids Res., 1996, 24, 1554–1560). Within the crystal, the d(TpA)* molecules exist as zwitterions with a protonated amidine fragment of the eight-membered ring neutralizing the charge of the internucleotide phosphate monoanion. The absolute configuration at the original thymine C5 and C6 atoms is determined as 5S,6R. This is consistent with d(TpA)* arising by valence isomerization of a precursor cyclobutane photoproduct with cis–syn stereochemistry that is generated by [2 + 2] photoaddition of the thymine 5,6-double bond across the C6 and C5 positions of adenine. This mode of photoaddition should be favoured by the stacked conformation of adjacent T and A bases in B-form DNA. It is probable that the primary photoreaction is mechanistically analogous to pyrimidine dimerization despite having a much lower quantum yield.
Resumo:
Toluene- and naphthalene-dioxygenase-catalysed sulfoxidation of nine disubstituted methylphenyl sulfides, using whole cells of Pseudomonas putida, consistently gave the corresponding enantioenriched sulfoxides. Using the P. putida UV4 mutant strain, and these substrates, differing proportions of the corresponding cis-dihydrodiol sulfides were also isolated. Evidence was found for the concomitant dioxygenase-catalysed cis-dihydroxylation and sulfoxidation of methyl paratolyl sulfide. A simultaneous stereoselective reductase-catalysed deoxygenation of (S)-methyl para-tolyl sulfoxide, led to an increase in the proportion of the corresponding cis-dihydrodiol sulfide. The enantiopurity values and absolute configurations of the corresponding cis-dihydrodiol metabolites from methyl ortho-and para-substituted phenyl sulfides were determined by different methods, including chemoenzymatic syntheses from the cis-dihydrodiol metabolites of para-substituted iodobenzenes. Further evidence was provided to support the validity of an empirical model to predict, (i) the stereochemistry of cis-dihydroxylation of para-substituted benzene substrates, and (ii) the regiochemistry of cis-dihydroxylation reactions of ortho-substituted benzenes, each using toluene dioxygenase as biocatalyst.
Resumo:
Aromatic dioxygenases have been found to catalyse single and tandem oxidation reactions of conjugated polyenes. Rational selection and design of dioxygenases, allied to substrate shape, size and substitution pattern, has been used to control regiochemistry and stereochemistry during the oxygenation process. The resulting enantiopure bioproducts have been increasingly utilised as precursors for new and alternative routes in chiral synthesis.
Resumo:
A series of ten cis-dihydro-diol metabolites has been obtained by bacterial biotransformation of the corresponding 1,4-disubstituted benzene substrates using Pseudomonas putida UV4, a source of toluene dioxygenase (TDO). Their enantiomeric excess (ee) values have been established using chiral stationary phase HPLC and H-1 NMR spectroscopy. Absolute configurations of the majority of cis-dihydrodiols have been established using stereochemical correlation and X-ray crystallography and the remainder have been tentatively assigned using NMR spectroscopic methods but finally confirmed by circular dichroism (CD) spectroscopy. These configurational assignments support and extend the validity of an empirical model, previously used to predict the preferred stereochemistry of TDO-catalysed cis-dihydroxylation of ten 1,4-disubstituted benzene substrates, to more than twenty-five examples.
Resumo:
The synthesis of a new bis(2,2-bipyridine), bridged by a Schiff base cyclohexane moiety is described. Surprisingly, this compound does not appear to form discrete oligonuclear metal complexes on the addition of zinc(II) and iron(II) cations. In order to rationalise this behaviour, the compound's conformation has been explored using a combination of circular dichroism, X-ray crystallography and DFT calculations, indicating that at least two energy barriers need to be overcome to orientate the ligand in a suitable conformation to permit the formation of coordination helicates with control over the metal centred stereochemistry. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A short synthesis of the postulated structure for indolizidine alkaloid 259B with the hydrogens at C5 and C9 entgegen has been achieved with complete control of stereochemistry at C5. Both diastereoisomers at C8 were obtained, but neither proved to be the natural product. The comparison of the mass and FTIR spectral properties of the synthetic compounds to those of the natural material strongly suggest that the gross structure is correct and that the difference may be a branch in the C5 alkyl side-chain. The GC-retention times of the two synthetic compounds were markedly longer than that of the natural 5,9E-259B.
Resumo:
Reductive cyclisation of ail E-vinyl bromide with ail allylic acetate proceeds under palladium catalysis 10 give the 8-dehydropumiliotoxin skeleton, a potential advanced precursor to 8-deoxypumiliotoxin alkaloids. Control of the stereochemistry of the E-vinyl bromide precursor is achieved readily using the Kogen or Bruckner bromophosphonate reagents and the reductive cyclisation proceeds with retention of the vinyl bromide stereochemistry. The mechanism for the cyclisation involves an in situ conversion of the allylic acetate to ail allyl stannane followed by ail intramolecular Stille-type coupling.
Resumo:
Typically, Povarov reactions of imines derived from aromatic amines and aromatic aldehydes show poor exo/endo-stereoselectivity and to date no data is available on the regioselectivity of the cyclisation when 3-substituted imines are employed. We have demonstrated that reaction using acyclic enamides as the alkene component with 3-nitro substituted imines is completely regioselective and gave only the 5-nitro substituted tetrahydroquinoline. As a bonus the reaction also became completely exo-selective with the stereochemistry of the E-alkene preserved in the tetrahydroquinoline product.
Resumo:
The tricyclic core of martinelline and martinellic acid was rapidly assembled utilising an imino Diels-Alder reaction of an imine derived from cinnamaldehyde with a cyclic enamide. The cycloaddition was completely regioselective though the exo endo selectivity was poor. These diastercoisomers were readily separated by flash chromatography and the relative stereochemistry of the exo-isomer confirmed by single crystal X-ray crystallography. This intermediate was converted to the central core of the aforementioned alkaloids in five additional synthetic operations. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Intramolecular Heck cyclisation of (E)-vinyl bromides leads to indolizidines, related to pumiliotoxin alkaloids, in which the stereochemistry of the trisubstituted double bond undergoes inversion. A cyclopropyl intermediate, which is believed to be responsible for the double bond inversion, has been intercepted by forcing an 'early' beta-hydride elimination on this species. The relative stereochemistry of this cyclopropyl intermediate determines the regioselectivity of the final beta-hydride elimination. In this case all three beta-hydride eliminations were stereochemically permitted, giving rise to a mixture of three isomeric products, differing in the position of a double bond. (Z)-Vinyl bromides were found to be less reactive than (E)-vinyl bromides, but on cyclisation gave the required conjugated diene, with inversion of the vinyl bromide stereochemistry, as the sole reaction product. This methodology will allow rapid stereoselective access to the diene-based pumiliotoxin alkaloids.