117 resultados para STAY
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The proportion of elderly in the population has dramatically increased and will continue to do so for at least the next 50 years. Medical resources throughout the world are feeling the added strain of the increasing proportion of elderly in the population. The effective care of elderly patients in hospitals may be enhanced by accurately modelling the length of stay of the patients in hospital and the associated costs involved. This paper examines previously developed models for patient length of stay in hospital and describes the recently developed conditional phase-type distribution (C-Ph) to model patient duration of stay in relation to explanatory patient variables. The Clinics data set was used to demonstrate the C-Ph methodology. The resulting model highlighted a strong relationship between Barthel grade, patient outcome and length of stay showing various groups of patient behaviour. The patients who stay in hospital for a very long time are usually those that consume the largest amount of hospital resources. These have been identified as the patients whose resulting outcome is transfer. Overall, the majority of transfer patients spend a considerably longer period of time in hospital compared to patients who die or are discharged home. The C-Ph model has the potential for considering costs where different costs are attached to the various phases or subgroups of patients and the anticipated cost of care estimated in advance. It is hoped that such a method will lead to the successful identification of the most cost effective case-mix management of the hospital ward.
Resumo:
A fundamental aspect of health care management is the effective allocation of resources. This is of particular importance in geriatric hospitals where elderly patients tend to have more complex needs. Hospital managers would benefit immensely if they had advance knowledge of patient duration of stay in hospital. Managers could assess the costs of patient care and make allowances for these in their budget. In this paper, we tackle this important problem via a model which predicts the duration of stay distribution of patients in hospital. The approach uses phase-type distributions conditioned on a Bayesian belief network.
Resumo:
Coxian phase-type distributions are a special type of Markov model that describes duration until an event occurs in terms of a process consisting of a sequence of latent phases. This paper considers the use of Coxian phase-type distributions for modelling patient duration of stay for the elderly in hospital and investigates the potential for using the resulting distribution as a classifying variable to identify common characteristics between different groups of patients according to their (anticipated) length of stay in hospital. The identification of common characteristics for patient length of stay groups would offer hospital managers and clinicians possible insights into the overall management and bed allocation of the hospital wards.
Resumo:
Modelling patient flow in health care systems is vital in understanding the system activity and may therefore prove to be useful in improving their functionality. An extensively used measure is the average length of stay which, although easy to calculate and quantify, is not considered appropriate when the distribution is very long-tailed. In fact, simple deterministic models are generally considered inadequate because of the necessity for models to reflect the complex, variable, dynamic and multidimensional nature of the systems. This paper focuses on modelling length of stay and flow of patients. An overview of such modelling techniques is provided, with particular attention to their impact and suitability in managing a hospital service.