8 resultados para SORBENT

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new peat-based sorbent was evaluated for the capture of heavy metals from waste streams. The media is a pelletted blend of organic humic material targeted for the capture of soluble metals from industrial waste streams and stormwater. The metals chosen for the media evaluation were Cd, Cu, Ni, and Zn due to their occurrence and abundance in waste streams and runoff. Sorption tests included an evaluation of the rate and extent of metals capture by the media, single versus multicomponent metals uptake, pH, anion influence, leaching effects and the effect of media moisture content on uptake rate and capacity. Isotherms of the sorption results showed that the presence of multiple metals increased the total sorption capacity of the media compared to the single component metal capacity; a result of site selectivity within the media. However the capacity for an individual metal in a multicomponent metal matrix was reduced compared to its single component capacity, due to competition for sites. Evidence of ion exchange behavior was observed but did not account for all metals capture. The media also provided a buffering action to counter the pH drop typically associated with metals capture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecularly imprinted polymer (MIP) was prepared with caffeine as the template molecule. Thermal polymerisation (60°C) was optimised, varying ratios of monomer, cross linker and template. The polymer was used as a solid-phase extraction (SPE) sorbent, for selective trapping and pre-concentration of caffeine. Caffeine was loaded on the MIP-SPE cartridge using different loading conditions (solvents, pH value). Washing and elution of the caffeine bound to the MIP was studied utilising different protocols. The extraction protocol was successfully applied to the direct extraction of caffeine from beverages and spiked human plasma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hazardous shipyard wastewater is a worldwide problem, arising from ship repair. In this study an experimental programme was undertaken to establish the suitability of dolomite and dolomitic sorbent materials to remove contaminants from wastewater arising from a commercial shipyard. Experimental data indicate that dolomite and dolomitic sorbents have the ability to significantly reduce the COD concentration of the shipyard effluent (98% reduction). The data gained from trials at a shipyard indicated that the dolomite treatment process could be undertaken in a 8000 L pilot scale reaction vessel. Analysis of the wastewater using ICP-MS during the pilot trial indicated that the dolomite significantly reduced the concentrations of metallic impurities. The concentration of Sn ions, which is indicative of organo-tin complexes commonly found in shipyard wastewater, was reduced by 80% from its initial concentration in the pilot trial. The mechanism for the removal process using dolomite has been ascribed to a metal complexation/sorption process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic and its compounds are toxic pollutants for the environment and all living organisms. At present, there is considerable interest in studying new sorbent materials for the removal of arsenic from aqueous solutions. This work discusses the feasibility of arsenic uptake onto dolomite which is considered to be a potential inexpensive adsorbent. Thermodynamic and kinetic experiments were undertaken to assess the capacity and rate of As uptake onto dolomite. Experimental data were mathematically described using adsorption kinetic models, namely pseudo-first-order and pseudo-second-order models. The arsenic removal was found to be dependent on the dosage of dolomite, adsorbent particle size and the presence of various anions. Thermodynamic results indicate that the adsorption follows an exothermic chemisorption process. The experimental data indicate successful removal of As(V) ion from aqueous solution indicating that dolomite be used as an inexpensive treatment process. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rapid liquid chromatographic-tandem mass spectrometric (LC-MS/MS) multi-residue method for the simultaneous quantitation and identification of sixteen synthetic growth promoters and bisphenol A in bovine milk has been developed and validated. Sample preparation was straightforward, efficient and economically advantageous. Milk was extracted with acetonitrile followed by phase separation with NaCl. After centrifugation, the extract was purified by dispersive solid-phase extraction with C18 sorbent material. The compounds were analysed by reversed-phase LC-MS/MS using both positive and negative ionization and operated in multiple reaction monitoring (MRM) mode, acquiring two diagnostic product ions from each of the chosen precursor ions for unambiguous confirmation. Total chromatographic run time was less than 10 min for each sample. The method was validated at a level of 1 mu g L-1. A wide variety of deuterated internal standards were used to improve method performance. The accuracy and precision of the method were satisfactory for all analytes. The confirmative quantitative liquid chromatographic tandem mass spectrometric (LC-MS/MS) method was validated according to Commission Decision 2002/657/EC. The decision limit (CC alpha) and the detection capability (CC beta) were found to be below the chosen validation level of 1 mu g L-1 for all compounds. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the possibility of optimising 3D Organised Mesoporous Silica (OMS) coated with both iron and aluminium oxides for the optimal removal of As(III) and As(V) from synthetic contaminated water. The materials developed were fully characterised and were tested for removing arsenic in batch experiments. The effect of total Al to Fe oxides coating on the selective removal of As(III) and As(V) was studied. It was shown that 8% metal coating was the optimal configuration for the coated OMS materials in removing arsenic. The effect of arsenic initial concentration and pH, kinetics and diffusion mechanisms was studied, modelled and discussed. It was shown that the advantage of an organised material over an un-structured sorbent was very limited in terms of kinetic and diffusion under the experimental conditions. It was shown that physisorption was the main adsorption process involved in As removal by the coated OMS. Maximum adsorption capacity of 55 mg As(V).g-1 was noticed at pH 5 for material coated with 8% Al oxides while 35 mg As(V).g-1 was removed at pH 4 for equivalent material coated with Fe oxides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrous cerium oxide (HCO) was synthesized by intercalation of solutions of cerium(III) nitrate and sodium hydroxide and evaluated as an adsorbent for the removal of hexavalent chromium from aqueous solutions. Simple batch experiments and a 25 factorial experimental design were employed to screen the variables affecting Cr(VI) removal efficiency. The effects of the process variables; solution pH, initial Cr(VI) concentration, temperature, adsorbent dose and ionic strength were examined. Using the experimental results, a linear mathematical model representing the influence of the different variables and their interactions was obtained. Analysis of variance (ANOVA) demonstrated that Cr(VI) adsorption significantly increases with decreased solution pH, initial concentration and amount of adsorbent used (dose), but slightly decreased with an increase in temperature and ionic strength. The optimization study indicates 99% as the maximum removal at pH 2, 20 °C, 1.923 mM of metal concentration and a sorbent dose of 4 g/dm3. At these optimal conditions, Langmuir, Freundlich and Redlich–Peterson isotherm models were obtained. The maximum adsorption capacity of Cr(VI) adsorbed by HCO was 0.828 mmol/g, calculated by the Langmuir isotherm model. Desorption of chromium indicated that the HCO adsorbent can be regenerated using NaOH solution 0.1 M (up to 85%). The adsorption interactions between the surface sites of HCO and the Cr(VI) ions were found to be a combined effect of both anion exchange and surface complexation with the formation of an inner-sphere complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the removal of arsenic from aqueous solutions onto thermally processed dolomite is investigated. The dolomite was thermally processed (charred) at temperatures of 600, 700 and 800 degrees C for 1, 2, 4 and 8 h. Isotherm experiments were carried out on these samples over a wide pH range. A complete arsenic removal was achieved over the pH range studied when using the 800 degrees C charred dolomite. However, at this temperature, thermal degradation of the dolomite weakens its structure due to the decomposition of the magnesium carbonate, leading to a partial dissolution. For this reason, the dolomitic sorbent chosen for further investigations was the 8 h at 700 degrees C material. Isotherm studies indicated that the Langmuir model was successful in describing the process to a better extent than the Freundlich model for the As(V) adsorption on the selected charred dolomite. However, for the As(III) adsorption, the Freundlich model was more successful in describing the process. The maximum adsorption capacities of charred dolomite for arsenite and arsenate ions are 1.846 and 2.157 mg/g, respectively. It was found that both the pseudo first- and second-order kinetic models are able to describe the experimental data (R-2 > 0.980). The data suggest the charring process allows dissociation of the dolomite to calcium carbonate and magnesium oxide, which accelerates the process of arsenic oxide and arsenic carbonate precipitation. (C) 2014 Elsevier B.V. All rights reserved.