34 resultados para SOLAR AND ATMOSPHERIC NEUTRINOS
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
New R-matrix calculations of electron impact excitation rates in Ca XV are used to derive theoretical electron density diagnostic emission line intensity ratios involving 2s(2)2p(2)- 2s2p(3) transitions, specifically R-1 = I(208.70 Angstrom)/I(200.98 Angstrom), R-2 = I(181.91 Angstrom)/I(200.98 Angstrom), and R-3 = I(215.38 Angstrom)/I(200.98 Angstrom), for a range of electron temperatures (T-e = 10(6.4)-10(6.8) K) and densities (Ne = 10(9)-10(13) cm(-3)) appropriate to solar coronal plasmas. Electron densities deduced from the observed values of R-1, R-2, and R-3 for several solar flares, measured from spectra obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab, are found to be consistent. In addition, the derived electron densities are in excellent agreement with those determined from line ratios in Ca XVI, which is formed at a similar electron temperature to Ca XV. These results provide some experimental verification for the accuracy of the line ratio calculations, and hence the atomic data on which they are based. A set of eight theoretical Ca XV line ratios involving 2s(2)2p(2)-2s2p(3) transitions in the wavelength range similar to140-216 Angstrom are also found to be in good agreement with those measured from spectra of the TEXT tokamak plasma, for which the electron temperature and density have been independently determined. This provides additional support for the accuracy of the theoretical line ratios and atomic data.
Resumo:
An analysis of radiative transfer effects present in the Fe XV ion stage of solar and stellar coronal plasmas provides a general explanation of line radiation intensity enhancement above the optically thin limit. Full linearization radiation transfer is compared with the escape factor method and found to be in good agreement at the lower column densities. An angular study of the enhancement shows that symmetry factors are of great importance. This gives a possible reason for the indeterminate status of opacity in relation to coronal lines of distant stellar sources, where only emission integrated across the whole surface is detected.
Resumo:
New fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe XVI are used to determine theoretical emission-line ratios applicable to the 251-361 and 32-77 angstrom portions of the extreme-ultraviolet (EUV) and soft X-ray spectral regions, respectively. A comparison of the EUV results with observations from the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals excellent agreement between theory and experiment. However, for emission lines in the 32-49 angstrom portion of the soft X-ray spectral region, there are large discrepancies between theory and measurement for both a solar flare spectrum obtained with the X-Ray Spectrometer/Spectrograph Telescope (XSST) and for observations of Capella from the Low- Energy Transmission Grating Spectrometer (LETGS) on the Chandra X-ray Observatory. These are probably due to blending in the solar flare and Capella data from both first-order lines and from shorter wavelength transitions detected in second and third order. By contrast, there is very good agreement between our theoretical results and the XSST and LETGS observations in the 50-77 angstrom wavelength range, contrary to previous results. In particular, there is no evidence that the Fe XVI emission from the XSST flare arises from plasma at a much higher temperature than that expected for Fe XVI in ionization equilibrium, as suggested by earlier work.
Resumo:
Mathematical models are useful tools for simulation, evaluation, optimal operation and control of solar cells and proton exchange membrane fuel cells (PEMFCs). To identify the model parameters of these two type of cells efficiently, a biogeography-based optimization algorithm with mutation strategies (BBO-M) is proposed. The BBO-M uses the structure of biogeography-based optimization algorithm (BBO), and both the mutation motivated from the differential evolution (DE) algorithm and the chaos theory are incorporated into the BBO structure for improving the global searching capability of the algorithm. Numerical experiments have been conducted on ten benchmark functions with 50 dimensions, and the results show that BBO-M can produce solutions of high quality and has fast convergence rate. Then, the proposed BBO-M is applied to the model parameter estimation of the two type of cells. The experimental results clearly demonstrate the power of the proposed BBO-M in estimating model parameters of both solar and fuel cells.
Resumo:
We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvénic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvénic sectors, while no bow shock forms in the sub-Alfvénic sectors. The planets reside most of the time in the sub-Alfvénic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the intense stellar wind. For the steady-state solution, the heating is about 0.1%-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport. Here we assume constant ionospheric Pedersen conductance similar to that of the Earth. The conductance could be greater due to the intense EUV radiation leading to smaller heating rates. We plan to quantify the ionospheric conductance in future study.
Resumo:
Simultaneous observations of explosive chromospheric evaporation are presented using data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) and the Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory. For the first time, cospatial imaging and spectroscopy have been used to observe explosive evaporation within a hard X-ray emitting region. RHESSI X-ray images and spectra were used to determine the flux of nonthermal electrons accelerated during the impulsive phase of an M2.2 flare. When we assumed a thick-target model, the injected electron spectrum was found to have a spectral index of similar to 7.3, a low-energy cutoff of similar to 20 keV, and a resulting flux of >= 4 x10(10) ergs cm(-2) s(-1). The dynamic response of the atmosphere was determined using CDS spectra; we found a mean upflow velocity of 230 +/- 38 km s(-1) in Fe (XIX) (592.23 angstrom) and associated downflows of 36 +/- 16 and 43 +/- 22 km s(-1) at chromospheric and transition region temperatures, respectively, relative to an averaged quiet- Sun spectra. The errors represent a 1 j dispersion. The properties of the accelerated electron spectrum and the corresponding evaporative velocities were found to be consistent with the predictions of theory.
Resumo:
The structure and properties of a newly emerged solar active region (NOAA Active Region 7985) are discussed using the Coronal Diagnostic Spectrometer (CDS) and the Extreme- Ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory. CDS obtained high-resolution EUV spectra in the 308-381 Angstrom and 513-633 Angstrom wavelength ranges, while EIT recorded full-disk EUV images in the He II (304 Angstrom), Fe IX/X (171 Angstrom), Fe xii (195 Angstrom), and Fe XV (284 Angstrom) bandpasses. Electron density measurements from Si rx, Si X, Fe xii, Fe XIII, and Fe xiv line ratios indicate that the region consists of a central high- density core with peak densities of the order of 1.2 x 10(10) cm(-3), which decrease monotonically to similar to5.0 X 10(8) cm(-3) at the active region boundary. The derived electron densities also vary systematically with temperature. Electron pressures as a function of both active region position and temperature were estimated using the derived electron densities and ion formation temperatures, and the constant pressure assumption was found to be an unrealistic simplification. Indeed, the active region is found to have a high-pressure core (1.3 x 10(16) cm(-3) K) that falls to 6.0 x 10(14) cm(-3) K just outside the region. CDS line ratios from different ionization stages of iron, specifically Fe xvi (335.4 Angstrom) and Fe xiv (334.4 Angstrom), were used to diagnose plasma temperatures within the active region. Using this method, peak temperatures of 2.1 x 10(6) K were identified. This is in good agreement with electron temperatures derived using EIT filter ratios and the two-temperature model of Zhang et al. The high- temperature emission is confined to the active region core, while emission from cooler (1-1.6) x 10(6) K lines originates in a system of loops visible in EIT 171 and 195 X images. Finally, the three-dimensional geometry of the active region is investigated using potential field extrapolations from a Kitt Peak magnetogram. The combination of EUV and magnetic field extrapolations extends the "core-halo" picture of active region structure to one in which the core is composed of a number of compact coronal loops that confine the hot, dense, high- pressure core plasma while the halo emission emerges from a system of cooler and more extended loops.
Resumo:
New R-matrix calculations of electron impact excitation rates for Fe XI are used to determine theoretical emission line ratios applicable to solar and stellar coronal observations. These are subsequently compared to solar spectra of the quiet Sun and an active region made by the Solar EUV Rocket Telescope and Spectrograph (SERTS-95), as well as Skylab observations of two flares. Line blending is identified, and electron densities of 10(9.3), 10(9.7), greater than or equal to 10(10.8), and greater than or equal to 10(11.3) cm(-3) are found for the quiet Sun, active region, and the two flares, respectively. Observations of the F5 IV-V star Procyon, made with the Extreme Ultraviolet Explorer (EUVE) satellite, are compared and contrasted with the solar observations. It is confirmed that Procyon's average coronal conditions are very similar to those seen in the quiet Sun, with N-e = 10(9.4) cm(-3). In addition, although the quiet Sun is the closest solar analog to Procyon, we conclude that Procyon's coronal temperatures are slightly hotter than solar. A filling factor of 25(-12)(+38)% was derived for the corona of Procyon.
Resumo:
Observational evidence of gentle chromospheric evaporation during the impulsive phase of a C9.1 solar flare is presented using data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory. Until now, evidence of gentle evaporation has often been reported during the decay phase of solar flares, where thermal conduction is thought to be the driving mechanism. Here we show that the chromospheric response to a low flux of nonthermal electrons (>= 5 cm(-2) s(-1)) results in plasma upflows of 13 +/- 16, 16 +/- 18, and 110 +/- 58 km s(-1) in the cool He I and O V emission lines and the 8 MK Fe XIX line, respectively. These findings, in conjunction with other recently reported work, now confirm that the dynamic response of the solar atmosphere is sensitively dependent on the flux of incident electrons.
Resumo:
We present an analysis of high resolution VLT-FLAMES spectra of 61 B-type stars with relatively narrow-lined spectra located in 4 fields centered on the Milky Way clusters; NGC 3293 and NGC 4755 and the Large and Small Magellanic cloud clusters; NGC 2004 and NGC 330. For each object a quantitative analysis was carried out using the non-LTE model atmosphere code TLUSTY; resulting in the determination of their atmospheric parameters and photospheric abundances of the dominant metal species (C, N, O, Mg, Si, Fe). The results are discussed in relation to our earlier work on 3 younger clusters in these galaxies; NGC 6611, N11 and NGC 346 paying particular attention to the nitrogen abundances which are an important probe of the role of rotation in the evolution of stars. This work along with that of the younger clusters provides a consistent dataset of abundances and atmospheric parameters for over 100 B-type stars in the three galaxies. We provide effective temperature scales for B-type dwarfs in all three galaxies and for giants and supergiants in the SMC and LMC. In each galaxy a dependence on luminosity is found between the three classes with the unevolved dwarf objects having significantly higher effective temperatures. A metallicity dependence is present between the SMC and Galactic dwarf objects, and whilst the LMC stars are only slightly cooler than the SMC stars, they are significantly hotter than their Galactic counterparts.
Resumo:
A detailed study is presented of the decaying solar-active region NOAA 10103 observed with the Coronal Diagnostic Spectrometer (CDS), the Michelson Doppler Imager (MDI) and the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). Electron-density maps formed using Si x (356.03 angstrom/347.41 angstrom) show that the density varies from similar to 10(10) cm(-3) in the active-region core to similar to 7 x 108 cm-3 at the region boundaries. Over the 5 d of observations, the average electron density fell by similar to 30 per cent. Temperature maps formed using Fe XVI (335.41 angstrom)/Fe XIV (334.18 angstrom) show electron temperatures of similar to 2.34 x 10(6) K in the active-region core and similar to 2.10 x 10(6) K at the region boundaries. Similarly to the electron density, there was a small decrease in the average electron temperature over the 5-d period. The radiative, conductive and mass-flow losses were calculated and used to determine the resultant heating rate (P-H). Radiative losses were found to dominate the active-region cooling process. As the region decayed, the heating rate decreased by almost a factor of 5 between the first and last day of observations. The heating rate was then compared to the total unsigned magnetic flux (Phi(tot) = integral dA vertical bar B-z vertical bar), yielding a power law of the form P-H similar to Phi(0.81 +/- 0.32)(tot) This result suggests that waves rather than nanoflares may be the dominant heating mechanism in this active region.
Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids
Resumo:
The effect of water content on room-temperature ionic liquids (RTILs) was studied by Karl Fischer titration and cyclic voltammetry in the following ionic liquids: tris(P-hexyl)tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P-14,P-6,P-6,P-6][NTf2], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [C(4)mpyrr][NTf2], 1-hexyl-3-methylimidazolium tris(perfluoroethyl)trifluorophosphate [C(6)mim][FAP], 1-butyl3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)mim][NTf2], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)dmim][NTf2], N-hexyltriethylammonium bis(trifluoromethylsolfonyl)imide [N-6,N-2,N-2,N-2][NTf2], 1-butyl-3-methylirnidazolium hexafluorophosphate [C(4)mim][PF6], F6], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(2)mim][NTf2], 1-butyl-3-methylimidazolium tetrafluoroborate [C(4)mim][BF4], 1-hexyl-3-methylimidazolium iodide [C(4)mim][I], 1-butyl-3-methylimidazolium trifluoromethylsulfonate [C(4)mim][OTf], and 1-hexyl-3-methylimidazolium chloride [C(6)mim][Cl]. In addition, electrochemically relevant properties such as viscosity, conductivity, density, and melting point of RTILs are summarized from previous literature and are discussed. Karl Fisher titrations were carried out to determine the water content of RTILs for vacuum-dried, atmospheric, and wet samples. The anion in particular was found to affect the level of water uptake. The hydrophobicity of the anions adhered to the following trend: [FAP](-) > [NTf2](-) > [PF6](-) > [BF4](-) > halides. Cyclic voltammetry shows that an increase in water content significantly narrows the electrochemical window of each ionic liquid. The electrochemical window decreases in the following order: vacuum-dried > atmospheric > wet at 298 K > 318 K > 338 K. The anodic and cathodic potentials vs ferrocene internal reference are also listed under vacuum-dried and atmospheric conditions. The data obtained may aid the selection of a RTIL for use as a solvent in electrochemical applications.
Resumo:
Aims: We generate theoretical ultraviolet and extreme-ultraviolet emission line ratios for O IV and show their strong versatility as electron temperature and density diagnostics for astrophysical plasmas.
Methods: Recent fully relativistic calculations of radiative rates and electron impact excitation cross sections for O IV, supplemented with earlier data for A-values and proton excitation rates, are used to derive theoretical O IV line intensity ratios for a wide range of electron temperatures and densities.
Results: Diagnostic line ratios involving ultraviolet or extreme-ultraviolet transitions in O IV are presented, that are applicable to a wide variety of astrophysical plasmas ranging from low density gaseous nebulae to the densest solar and stellar flares. Comparisons with observational data, where available, show good agreement between theory and experiment, providing support for the accuracy of the diagnostics. However, diagnostics are also presented involving lines that are blended in existing astronomical spectra, in the hope this might encourage further observational studies at higher spectral resolution.