2 resultados para SOCS-based identifiability
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Low-power processors and accelerators that were originally designed for the embedded systems market are emerging as building blocks for servers. Power capping has been actively explored as a technique to reduce the energy footprint of high-performance processors. The opportunities and limitations of power capping on the new low-power processor and accelerator ecosystem are less understood. This paper presents an efficient power capping and management infrastructure for heterogeneous SoCs based on hybrid ARM/FPGA designs. The infrastructure coordinates dynamic voltage and frequency scaling with task allocation on a customised Linux system for the Xilinx Zynq SoC. We present a compiler-assisted power model to guide voltage and frequency scaling, in conjunction with workload allocation between the ARM cores and the FPGA, under given power caps. The model achieves less than 5% estimation bias to mean power consumption. In an FFT case study, the proposed power capping schemes achieve on average 97.5% of the performance of the optimal execution and match the optimal execution in 87.5% of the cases, while always meeting power constraints.
Resumo:
Power capping is a fundamental method for reducing the energy consumption of a wide range of modern computing environments, ranging from mobile embedded systems to datacentres. Unfortunately, maximising performance and system efficiency under static power caps remains challenging, while maximising performance under dynamic power caps has been largely unexplored. We present an adaptive power capping method that reduces the power consumption and maximizes the performance of heterogeneous SoCs for mobile and server platforms. Our technique combines power capping with coordinated DVFS, data partitioning and core allocations on a heterogeneous SoC with ARM processors and FPGA resources. We design our framework as a run-time system based on OpenMP and OpenCL to utilise the heterogeneous resources. We evaluate it through five data-parallel benchmarks on the Xilinx SoC which allows fully voltage and frequency control. Our experiments show a significant performance boost of 30% under dynamic power caps with concurrent execution on ARM and FPGA, compared to a naive separate approach.