278 resultados para SLOW-RELEASE

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Slow release drugs must be manufactured to meet target specifications with respect to dissolution curve profiles. In this paper we consider the problem of identifying the drivers of dissolution curve variability of a drug from historical manufacturing data. Several data sources are considered: raw material parameters, coating data, loss on drying and pellet size statistics. The methodology employed is to develop predictive models using LASSO, a powerful machine learning algorithm for regression with high-dimensional datasets. LASSO provides sparse solutions facilitating the identification of the most important causes of variability in the drug fabrication process. The proposed methodology is illustrated using manufacturing data for a slow release drug.

Relevância:

60.00% 60.00%

Publicador:

Resumo:


We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 h. However, their uptake was ~ 38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.

Graphical abstract

We used O-GNR-PEG-DSPE as a reliable, non-toxic vehicle for delivery of APE-1 inhibiting Lucanthone into GBM tumor cell lines. LUC-O-GNR-PEG-DSPE particles showed 60% or more uptake by CMV/U251 and A1-5/CMV/U251 where as the uptake by MCF7 and normal CG4 glial cells was much lower (38% and 29% respectively). Different concentrations of Luc (5–80 μM) loaded onto O-GNR-PEG-DSPE showed lower toxicity in the exposed cells compared to the free drug, due to possible slow release of the drug from this particle, which ensures minimum non-specific release of the drug from the particle once it is injected in vivo.
http://ars.els-cdn.com/content/image/1-s2.0-S1549963414004249-fx1.jpg

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of a radio-frequency driven, microscale non thermal atmospheric pressure plasma jet operated in helium with vol. 0.3% molecular oxygen gas admixture, on PC-3 prostate cancer cells has been investigated. The viability of cells exposed to the plasma was found to decrease with increasing plasma exposure time, with apoptosis through caspase and PARP cleavage being observed. High concentrations of nitrite and nitrate were detected in growth media exposed to the plasma and were found to increase in a time dependent manner post exposure. This indicates a slow release of reactive nitrogen species into the growth media, which is likely to influence cellular response to plasma exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of hydrogen sulfide (H2 S) in inflammation remains unclear with both pro- and anti-inflammatory actions of this gas described. We have now assessed the effect of GYY4137 (a slow-releasing H2 S donor) on lipopolysaccharide (LPS)-evoked release of inflammatory mediators from human synoviocytes (HFLS) and articular chondrocytes (HAC) in vitro. We have also examined the effect of GYY4137 in a complete Freund's adjuvant (CFA) model of acute joint inflammation in the mouse. GYY4137 (0.1-0.5 mM) decreased LPS-induced production of nitrite (NO2 (-) ), PGE2 , TNF-a and IL-6 from HFLS and HAC, reduced the levels and catalytic activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced LPS-induced NF-?B activation in vitro. Using recombinant human enzymes, GYY4137 inhibited the activity of COX-2, iNOS and TNF-a converting enzyme (TACE). In the CFA-treated mouse, GYY4137 (50 mg/kg, i.p.) injected 1 hr prior to CFA increased knee joint swelling while an anti-inflammatory effect, as demonstrated by reduced synovial fluid myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAG) activity and decreased TNF-a, IL-1ß, IL-6 and IL-8 concentration, was apparent when GYY4137 was injected 6 hrs after CFA. GYY4137 was also anti-inflammatory when given 18 hrs after CFA. Thus, although GYY4137 consistently reduced the generation of pro-inflammatory mediators from human joint cells in vitro, its effect on acute joint inflammation in vivo depended on the timing of administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract There is considerable interest in developing medical devices that provide controlled delivery of biologically active agents, for example, to reduce the incidence of device-related infection. Silicone elastomers are one of the commonest biomaterials used in medical device production. However, they have a relatively high coefficient of friction and the resulting lack of lubricity can cause pain and tissue damage on device insertion and removal. Novel silicone cross-linking agents have recently been reported that produce inherently ‘self-lubricating’ silicone elastomers with very low coefficients of friction. In this study, the model antibacterial drug metronidazole has been incorporated into these self-lubricating silicone elastomers to produce a novel bioactive biomaterial. The in vitro release characteristics of the bioactive component were evaluated as a function of cross-linker composition and drug loading. Although conventional matrix-type release kinetics were observed for metronidazole from the silicone systems, it was also observed that increasing the concentration of the cross-linking agent responsible for the lubricious character (tetra(oleyloxy)silane) relative to that of the standard non-lubricious cross-linking agent (tetrapropoxysilane) produced an increase in the metronidazole flux rate by up to 65% for a specified drug loading. The results highlight the potential for developing lubricious silicone medical devices with enhanced drug release characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of self-lubricating silicone elastomeric biomaterials, prepared using the novel crosslinking agent tetra( oleyloxy) silane and having very low coefficients of friction, has recently been reported. In this study, the in vitro release characteristics of lubricious oleyl alcohol produced during the silicone curing reaction have been quantitatively evaluated for a range of tetra( propoxy) silane/tetra(oleyloxy) silane crosslinker compositions using a novel evaporative light scattering detection method in combination with high performance liquid chromatography. The mechanism of oleyl alcohol release was seen to deviate from a simple, matrix-controlled diffusion process and instead obeyed an anomalous transport mechanism. An explanation for the observed release behaviour has been proposed based on competitive reaction kinetics between the tetra( oleyloxy) silane and tetra( propoxy) silane substituents of the silicone crosslinking agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controlled-release characteristics of matrix silicone intravaginal rings loaded with between 100 and 971 mg of nonoxynol-9 have been investigated with a view to developing a ring that may offer a new female-controlled method for the prevention of transmission of sexually transmitted diseases, particularly HIV. Intravaginal rings containing 253, 487 and 971 mg of nonoxynol-9 provided a daily release of 2 mg or more over the 8-day release period, the minimal amount of nonoxynol-9 considered to provide an effective vaginal concentration for the prevention of HIV. Furthermore, the maximum daily release of N9 was about 6 mg, an amount significantly smaller than that observed for other nonoxynol-9 products whose large daily doses may in fact increase the occurrence of HIV by causing epithelial damage to the vaginal tissue. The release mechanism of the liquid nonoxynol-9 from the intravaginal rings has also been investigated and compared to models describing the release of solid drugs from the rings. It has been demonstrated through release studies and surface microscopy that a drug depletion zone is not established in such liquid-loaded intravaginal ring systems, with implications for the release kinetics. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in vitro release characteristics of eight low-molecular-weight drugs (clindamycin, 17beta-estradiol, 17beta-estradiol-3-acetate, 17beta-estradiol diacetate, metronidazole, norethisterone, norethisterone acetate and oxybutynin) from silicone matrixtype intravaginal rings of various drug loadings have been evaluated under sink conditions. Through modelling of the release data using the Higuchi equation, and determination of the silicone solubility of the drugs, the apparent silicone elastomer diffusion coefficients of the drugs have been calculated. Furthermore, in an attempt to develop a quantitative model for predicting release rates of new drug substances from these vaginal ring devices, it has been observed that linear relationships exist between the log of the silicone solubility of the drug (mg ml(-1)) and the reciprocal of its melting point (K-1) (y = 3.558x - 9.620, R = 0.77), and also between the log of the diffusion coefficient (cm(2) s(-1)) and the molecular weight of the drug molecule (g mol(-1)) (y = - 0.0068x - 4.0738, R = 0.95). Given that the silicone solubility and silicone diffusion coefficient are the major parameters influencing the permeation of drugs through silicone elastomers, it is now possible to predict through use of the appropriate mathematical equations both matrix-type and reservoir-type intravaginal ring release rates simply from a knowledge of drug melting temperature and molecular weight. (C) 2003 Elsevier Science B.V. All rights reserved.