8 resultados para SCYPHOZOAN AURELIA-LABIATA
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Hyperiid amphipods (Order Amphipoda, Suborder Hyperiidea) are known to infest gelatinous zooplankton. However, the temporal backdrop to these associations is less clear, given that data are often gathered during discrete sampling events rather than over time. In general, hyperiids are considered to be pelagic: however, for individuals associated with metagenic jellyfishes in temperate shallow shelf seas, this may not always be the case, as the majority of their gelatinous hosts are present in the water column from spring to the onset of autumn. Here, we explored the temporal patterns of colonisation and overall duration of the association between Hyperia galba and 3 scyphozoan jellyfish species (Aurelia aurita, Cyanea capillata and C. lamarckii) in a temperate coastal system (Strangford Lough, Northern Ireland) during 2010 and 2012. Concomitantly, we used carbon and nitrogen stable isotope ratios to examine whether hyperiid infestation represented a permanent association with their host or was part of a more complex life history. We found that jellyfish were colonised by H. galba ca. 2 mo after they are first observed in the lough and that H. galba reached 100% prevalence in the different jellyfish species shortly before the medusae of each species disappeared from the water column. It is possible that some jellyfish overwintered in deeper water, prolonging the association between H. galba and their hosts. However, all the medusae sampled during the spring and early summer (whether they were newly emerged or had overwintered from the previous season) were not infected with hyperiids, suggesting that such behaviour was uncommon or that individuals had become dissociated from their host during the winter. Further evidence of temporary association came from stable isotope data, where δ13C and δ15N isotope ratios were indicative of feeding outside of their host prior to jellyfish colonisation. In combination, these findings suggest alternating habitat associations for H. galba, with the amphipods spending the majority of the year outside of the 3 scyphozoan species considered here.
Resumo:
Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and ;delta C-13 and delta N-15 stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in delta N-15 (trophic position) were evident between all three species, with size-based and temporal shifts in delta N-15 apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that jellyfish require more robust inclusion in marine fisheries or ecosystem models.
Resumo:
It is becoming increasingly evident that jellyfish (Cnidaria: Scyphozoa) play an important role within marine ecosystems, yet our knowledge of their seasonality and reproductive strategies is far from complete. Here, we explore a number of life history hypotheses for three common, yet poorly understood scyphozoan jellyfish (Rhizostoma octopus; Chrysaora hysoscella; Cyanea capillata) found throughout the Irish and Celtic Seas. Specifically, we tested whether (1) the bell diameter/wet weight of stranded medusae increased over time in a manner that suggested a single synchronised reproductive cohort; or (2) whether the range of sizes/weights remained broad throughout the stranding period suggesting the protracted release of ephyrae over many months. Stranding data were collected at five sites between 2003 and 2006 (n = 431 surveys; n = 2401 jellyfish). The relationship between bell diameter and wet weight was determined for each species (using fresh specimens collected at sea) so that estimates of wet weight could also be made for stranded individuals. For each species, the broad size and weight ranges of stranded jellyfish implied that the release of ephyrae may be protracted (albeit to different extents) in each species, with individuals of all sizes present in the water column during the summer months. For R. octopus, there was a general increase in both mean bell diameter and wet weight from January through to June which was driven by an increase in the variance and overall range of both variables during the summer. Lastly, we provide further evidence that rhizostome jellyfish may over-wintering as pelagic medusa which we hypothesise may enable them to capitalise on prey available earlier in the year.
Resumo:
Two techniques are described to calculate energy densities for the bell, gonad and oral arm tissues of three scyphozoan jellyfish (Cyanea capillata, Rhizostoma octopus and Chrysaora hysoscella). First, bomb-calorimetry was used, a technique that is readily available and inexpensive. However, the reliability of this technique for gelatinous material is contentious. Second, further analysis involving the more labour intensive proximate-composition analysis (protein, fat and carbohydrate) was carried out on two species (C capillata and R. octopus). These proximate data were subsequently converted to energy densities. The two techniques (bomb-calorimetry and proximate-composition) gave very similar estimates of energy density. Differences in energy density were found both amongst different species and between different tissues of the same species. Mean ( +/- S.D.) energy density estimates for whole animals from bomb-calorimetry were 0.18 +/- 0.05, 0.11 +/- 0.04, and 0.10 +/- 0.03 kJ g wet mass(-1) for C. capillata, R. octopus, and C. hysoscella respectively. The implications of these low energy densities for species feeding on jellyfish are discussed. (c) 2007 Elsevier B.V. All rights reserved.
Developing a simple, rapid method for identifying and monitoring jellyfish aggregations from the air
Resumo:
Within the marine environment, aerial surveys have historically centred on apex predators, such as pinnipeds, cetaceans and sea birds. However, it is becoming increasingly apparent that the utility of this technique may also extend to subsurface species such as pre-spawning fish stocks and aggregations of jellyfish that occur close to the surface. In light of this, we tested the utility of aerial surveys to provide baseline data for 3 poorly understood scyphozoan jellyfish found throughout British and Irish waters: Rhizostoma octopus, Cyanea capillata and Chrysaora hysoscella. Our principal objectives were to develop a simple sampling protocol to identify and quantify surface aggregations, assess their consistency in space and time, and consider the overall applicability of this technique to the study of gelatinous zooplankton. This approach provided a general understanding of range and relative abundance for each target species, with greatest suitability to the study of R. octopus. For this species it was possible to identify and monitor extensive, temporally consistent and previously undocumented aggregations throughout the Irish Sea, an area spanning thousands of square kilometres. This finding has pronounced implications for ecologists and fisheries managers alike and, moreover, draws attention to the broad utility of aerial surveys for the study of gelatinous aggregations beyond the range of conventional ship-based techniques.
Resumo:
Jellyfish are increasingly topical within studies of marine food webs. Stable isotope analysis represents a valuable technique to unravel the complex trophic role of these long-overlooked species. In other taxa, sample preservation has been shown to alter the isotopic values of species under consideration, potentially leading to misinterpretation of trophic ecology. To identify potential preservation effects in jellyfish, we collected Aurelia aurita from Strangford Lough (54(o)22'44.73aEuro(3)N, 5(o)32'53.44aEuro(3)W) during May 2009 and processed them using three different methods prior to isotopic analysis (unpreserved, frozen and preserved in ethanol). A distinct preservation effect was found on delta N-15 values: furthermore, preservation also influenced the positive allometric relationship between individual size and delta N-15 values. Conversely, delta C-13 values remained consistent between the three preservation methods, conflicting with previous findings for other invertebrate, fish and mammalian species. These findings have implications for incorporation of jellyfish into marine food webs and remote sampling regimes where preservation of samples is unavoidable.
Resumo:
Reports of nuisance jellyfish blooms have increased worldwide during the last half-century, but the possible causes remain unclear.Apersistent difficulty lies in identifying whether blooms occur owing to local or regional processes. This issue can be resolved, in part, by establishing the geographical scales of connectivity among locations, which may be addressed using genetic analyses and oceanographic modelling. We used landscape genetics and Lagrangian modelling of oceanographic dispersal to explore patterns of connectivity in the scyphozoan jellyfish Rhizostoma octopus, which occurs en masse at locations in the Irish Sea and northeastern Atlantic. We found significant genetic structure distinguishing three populations, with both consistencies and inconsistencies with prevailing physical oceanographic patterns. Our analyses identify locations where blooms occur in apparently geographically isolated populations, locations where blooms may be the source or result of migrants, and a location where blooms do not occur consistently and jellyfish are mostly immigrant. Our interdisciplinary approach thus provides a means to ascertain the geographical origins of jellyfish in outbreaks, which may have wide utility as increased international efforts investigate jellyfish blooms. © 2013 The Authors.
Resumo:
Understanding the spatial integrity and connectivity of jellyfish blooms is important for ecologists and coastal stakeholders alike. Previous studies have shown that the distribution of jellyfish blooms can display a marked consistency in space and time, suggesting that such patterns cannot be attributed to passive processes alone. In the present study, we used a combination of microsatellite markers and mitochondrial cytochrome oxidase I sequences to investigate genetic structuring of the scyphozoan jellyfish Rhizostoma octopus in the Irish and Celtic Seas. The mitochondrial data indicated far higher levels of population differentiation than the microsatellites: ΦST[MT] = 0.300 vs. ΦST[NUC] = 0.013. Simulation studies indicated that the low levels of nuclear differentiation were not the result of limited power because of low levels of polymorphism. These findings, supported by palaeodistribution modelling and mismatch distribution analysis, are consistent with expansion of R. octopus from a single, limited refugium after the Last Glacial Maximum, followed by subsequent isolation, and that the discrepancy between the mitochondrial and nuclear markers is a result of the nuclear loci taking longer to reach mutation–drift equilibrium following the expansion as a result of their four-fold larger effective population size. The populations studied are probably not well connected via gene flow, and thus genetically as well as geographically distinct, although our findings also highlight the need to use a combination of organellar and nuclear markers to enable a more complete understanding of population demography and structure, particularly for species with large effective population sizes.