55 resultados para SATURATION
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The physical effect of high concentrations of reversibly dissolved SO2 on [C(2)mim][NTf2] was examined using cyclic voltammetry, chronoamperometry, and ESR spectroscopy. Cyclic voltammetry of the oxidation of solutions of ferrocene, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), and chloride in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethanesufonyl)imide ([C(2)mim][NTf2]) reveals an increase in limiting current of each species corresponding to the addition of increasing concentrations of sulfur dioxide. Quantitative chronoamperometry reveals an increase in each species' diffusion coefficient with SO2 concentration. When chronoamperometric data were obtained for ferrocene in [C(2)mim][NTf2] at a range of temperatures, the translational diffusion activation energy (29.0 +/- 0.5 kJ mol(-1)) was found to be in good agreement with previous studies. Adding SO2 results in apparent near-activationless translational diffusion. A significant decrease in the activation energy of rotational diffusion with the SO2 saturation of a 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) solution in [C(2)mim][NTf2] (29.9 +/- 2.0 to 7.7 +/- 5.3 kJ mol(-1)) was observed using electron spin resonance (ESR) spectroscopy. The reversible physical absorption Of SO2 by [C(2)mim][NTf2] should have no adverse effect on the ability of that ionic liquid to be employed as a solvent in an electrochemical gas sensor, and it is possible that the SO2-mediated reduction of RTIL viscosity could have intrinsic utility.
Resumo:
The sonochemical oxidation efficiency (eta(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, eta(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest eta(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on eta(ox). This is supported by the luminol images, the measured dependence of eta(ox). on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on eta(ox). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We investigate if the super-saturation phenomenon observed at X-ray wavelengths for the corona exists in the chromosphere for rapidly rotating late-type stars. Moderate resolution optical spectra of fast-rotating EUV- and X-ray-selected late-type stars were obtained. Stars in a Per were observed in the northern hemisphere with the Isaac Newton 2.5 m telescope and Intermediate Dispersion Spectrograph. Selected objects from IC 2391 and IC 2602 were observed in the southern hemisphere with the Blanco 4 m telescope and R-C spectrograph at CTIO. Ca II H and K fluxes were measured for all stars in our sample. We find the saturation level for Ca II K at log (L CaK/L bol) = -4.08. The Ca II K flux does not show a decrease as a function of increased rotational velocity or smaller Rossby number as observed in the X-ray. This lack of "super-saturation" supports the idea of coronal stripping as the cause of saturation and super-saturation in stellar chromospheres and coronae, but the detailed underlying mechanism is still under investigation.
Resumo:
Driven by a double 75 ps pulse with 2.2 ns separation, saturated operation of nickel-like Ag, In, Sn, and Sm X-ray lasers have been demonstrated with only 75 J drive energy on target. The variation of X-ray laser output with target length is found to fit well to a simple model for an amplified spontaneous emission (ASE) laser including saturation. Small signal gains of similar to 10 cm(-1), effective gain length products of similar to 18, and saturation irradiance of (1-5)x 10(10) W/cm(2) are measured for these lasers using a fitting procedure. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We report the first demonstration of saturation in a Ni-like x-ray laser, specifically Ni-like Ag x-ray laser at 14 nm. Using high-resolution spatial imaging and angularly resolved streaking techniques, the output source size as well as the time history, divergence, energy, and spatial profile of the output beam have been fully characterized. The output intensity of the Ag laser was measured to be about 70 GWcm(-2) The narrow divergence, short pulse duration, high efficiency, and high brightness of the Ag laser make it an ideal candidate for many x-ray laser applications.
Resumo:
Silicone elastomer vaginal rings are currently being pursued as a controlled-release strategy for delivering microbicidal substances for the prevention of heterosexual transmission of HIV. Although it is well established that the distribution of drugs in delivery systems influences the release characteristics, in practice the distribution is often difficult to quantify in-situ. Therefore, the aim of this work was to determine whether Raman spectroscopy might provide a rapid, non-contact means of measuring the concentrations of the lead candidate HIV microbicide TMC120 in a silicone elastomer reservoir-type vaginal ring. Vaginal rings loaded with TMC120 were manufactured and sectioned before either Raman mapping an entire ring cross-section (100 µm resolution) or running line scans at appropriate time intervals up to 30 h after manufacture. The results demonstrated that detectable amounts of TMC120, above the silicone elastomer saturation concentration, could be detected up to 1 mm into the sheath, presumably as a consequence of permeation and subsequent reprecipitation. The extent of permeation was found to be similar in rings manufactured at 25 and 80°C.
Resumo:
Alfven wave phase mixing is an extensively studied mechanism for dissipating wave energy in an inhomogeneous medium. It is common in the vast majority of phase mixing papers to assume that even though short scale lengths and steep gradients develop as a result of phase mixing, nonlinear wave coupling does not occur. However, weakly nonlinear studies have shown that phase mixing generates magnetoacoustic modes. Numerical results are presented which show the nonlinear generation of magnetosonic waves by Alfven wave phase mixing. The efficiency of the effect is determined by the wave amplitude, the frequency of the Alfven waves and the gradient in the background Alfven speed. Weakly nonlinear theory has shown that the amplitude of the fast magnetosonic wave grows linearly in time. The simulations presented in this paper extend this result to later times and show saturation of the fast magnetosonic component at amplitudes much lower than that of the Alfven wave. For the case when Alfven waves are driven at the boundary, simulating photospheric footpoint motion, a clear modulation of the saturated amplitude is observed. All the results in this paper are for a low amplitude (less than or equal to 0.1), single frequency Alfven wave and a uniform background magnetic field in a two dimensional domain. For this simplified geometry, and with a monochromatic driver, we concluded that the nonlinear generation of fast modes has little effect on classical phase mixing.
Resumo:
The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.
Resumo:
The growth of magnetron sputtered Co/Au and Pd/Co/Au superlattices on Au and Pd buffer layers, deposited onto glass substrates, has been monitored optically and magneto-optically in real time, using rotating analyser ellipsometry and Kerr polarimetry, at a wavelength of 633 nm. The magneto-optical traces, combined with ex situ and in situ hysteresis loops, provide a detailed and informative fingerprint of the optical and magnetic properties of the films as they evolve during growth. For Co/Au, oscillations in the polar magneto-optical effect developed during the deposition of An overlayers on Co and these may be attributed to quantum well states. However, the hysteresis measurements show that the magnetic field required to maintain saturation magnetization throughout the experiment was larger than available in situ, introducing a degree of confusion concerning the interpretation of the data. This problem was overcome by the incorporation of Pd layers into the Co/Au structure, thereby eliminating variation in magnetic orientation during growth of the Au layers as a contributory factor to the observations.