11 resultados para Sécurité Maritime
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The sinking of the RMS Titanic in 1912 represents one of the most infamous maritime disasters in the history of shipping. Yet despite it entering the public imagination in the decades after its sinking, until recently it has all but been erased from the collective memory of the people of Belfast, the city in which it was built. In a post-conflict context, however, Belfast has begun to re-imagine the role of the ship in the city’s history, most particularly in the re-development of the docklands area and its designation as the Titanic Quarter, and through its landmark project the Titanic Belfast museum. This paper will trace the economic, social and political context from which the Titanic was built, and the role that this played in silencing any very public commemoration of its sinking until after the signing of the Belfast Agreement. The ‘story’ told in the new museum will be analysed from this perspective and will illustrate how the wounds of the Troubles continue to inform the interpretation of the city’s divided past.
Resumo:
Glazed Double Skin Facades (DSF) offer the potential to improve the performance of all-glass building skins, common to commercial office buildings in which full facade glazing has almost become the standard. Single skin glazing results in increased heating and cooling costs over opaque walls, due to lower thermal resistance of glass, and the increased impact of solar gain through it. However, the performance benefit of DSF technology continues to be questioned and its operation poorly understood, particularly the nature of airflow through the cavity. This paper deals specifically with the experimental analysis of the air flow characteristics in an automated double skin façade. The benefit of the DSF as a thermal buffer, and to limit overheating is evaluated through analysis of an extensive set of parameters including air and surface temperatures at each level in the DSF, airflow readings in the cavity and at the inlet and outlet, solar and wind data, and analytically derived pressure differentials. The temperature and air-flow are monitored in the cavity of a DSF using wireless sensors and hot wire anemometers respectively. Automated louvre operation and building set-points are monitored via the BMS. Thermal stratification and air flow variation during changing weather conditions are shown to effect the performance of the DSF considerably and hence the energy performance of the building. The relative pressure effects due to buoyancy and wind are analysed and quantified. This research aims to developed and validate models of DSFs in the maritime climate, using multi-season data from experimental monitoring. This extensive experimental study provides data for training and validation of models.