7 resultados para Rope
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Since the discovery of carbon nanotubes, it has been speculated that these materials should behave like nanoscale wires with unusual electronic properties and exceptional strength. Recently, 'ropes' of close-packed single-wall nanotubes have been synthesized in high yield. The tubes in these ropes are mainly of the (10,10) type3, which is predicted to be metallic. Experiments on individual nanotubes and ropes indicate that these systems indeed have transport properties that qualify them to be viewed as nanoscale quantum wires at low temperature. It has been expected that the close-packing of individual nanotubes into ropes does not change their electronic properties significantly. Here, however, we present first-principles calculations which show that a broken symmetry of the (10,10) tube caused by interactions between tubes in a rope induces a pseudogap of about 0.1 eV at the Fermi level. This pseudogap strongly modifies many of the fundamental electronic properties: we predict a semimetal-like temperature dependence of the electrical conductivity and a finite gap in the infrared absorption spectrum. The existence of both electron and hole charge carriers will lead to qualitatively different thermopower and Hall-effect behaviours from those expected for a normal metal.
Resumo:
We investigate the influence of tube-tube interactions in ropes of (10,10) carbon nanotubes, and find that these effects induce a pseudogap in the density of state (DOS) of the rope of width 0.1 eV at the Fermi level. In an isolated (n,n) carbon nanotube there are two bands that cross in a linear fashion at the Fermi level, making the nanotube metallic with a DOS that is constant in a 1.5 eV wide window around the Fermi energy. The presence of the neighbouring tubes causes these two bands to repel, opening up a band gap that can be as large as 0.3 eV. The small dispersion in the plane perpendicular to the rope smears out this gap for a rope with a large cross-sectional area, and we see a pseudogap at the Fermi energy in the DOS where the DOS falls to one third of its value for the isolated tube. This phenomenon should affect many properties of the behavior of ropes of (n,n) nanotubes, which should display a more semimetallic character than expected in transport and doping experiments, with the existence of both hole and electron carriers leading to qualitatively different thermopower and Hall-effect behaviors from those expected for a normal metal. Band repulsion like this can be expected to occur for any tube perturbed by a sufficiently strong interaction, for example, from contact with a surface or with other tubes.
Resumo:
Approximately 5% of pigs slaughtered in the UK have been tail-bitten, leading to welfare and production issues. Tail biting is sporadic and not all pigs tail bite. The aim of this study was to identify factors that are common in pigs that perform tail-biting behaviour, and that might be used in a predictive way to identify such animals.
The behaviour of 159 pigs was observed in the post-weaning period. Pigs were weaned at 4 weeks of age. In the week prior to weaning and at 6 weeks of age each pig was individually tested in a tail chew test (tail chew test 1 and 2, respectively). The tail chew test involved recording the pig's behaviour directed towards two ropes, one of which had been soaked in saline solution and the other not. The production performance of the pigs was recorded from birth to 7 weeks of age. Time spent performing tail-biting behaviour correlated positively with time in contact with the rope in tail chew test 2 (r = 0.224, P 1.5% tail biting 8.96 kg, = 1.5% tail biting 15-75 kg, = or = 1.5% tail biting 260 g/day, = 1.5% tail biting 343 g/day, 0.05).
The results suggest that pigs that tail bite have some nutritional deficiency that results in performance of foraging behaviour that is expressed in intensive housing as ear/tail biting.
Resumo:
An adaptation of bungee jumping, 'bungee running', involves participants attempting to run as far as they can whilst connected to an elastic rope which is anchored to a fixed point. Usually considered a safe recreational activity, we report a potentially life-threatening head injury following a bungee running accident.
Resumo:
Aims. We study the formation and evolution of a failed filament eruption observed in NOAA active region 11121 near the southeast
limb on November 6, 2010.
Methods. We used a time series of SDO/AIA 304, 171, 131, 193, 335, and 94 Å images, SDO/HMI magnetograms, as well as ROSA
and ISOON Hα images to study the erupting active region.
Results. We identify coronal loop arcades associated with a quadrupolar magnetic configuration, and show that the expansion and
cancellation of the central loop arcade system over the filament is followed by the eruption of the filament. The erupting filament
reveals a clear helical twist and develops the same sign of writhe in the form of inverse γ-shape.
Conclusions. The observations support the “magnetic breakout” process in which the eruption is triggered by quadrupolar reconnection
in the corona. We propose that the formation mechanism of the inverse γ-shape flux rope is the magnetohydrodynamic helical
kink instability. The eruption has failed because of the large-scale, closed, overlying magnetic loop arcade that encloses the active
region
Resumo:
Several north temperate marine species were recorded on subtidal hard-substratum reef sites selected to produce a gradient of structural complexity. The study employed an established scuba-based census method, the belt transect. The three types of reef examined, with a measured gradient of increasing structural complexity, were natural rocky reef, artificial reef constructed of solid concrete blocks, and artificial reef made of concrete blocks with voids. Surveys were undertaken monthly over a calendar year using randomly placed fixed rope transects. For a number of conspicuous species of fish and invertebrates, significant differences were found between the levels of habitat complexity and abundance. Overall abundance for many of the species examined was 2-3 times higher on the complex artificial habitats than on simple artificial or natural reef habitats. The enhanced habitat availability produced by the increased structural complexity delivered through specifically designed artificial reefs may have the potential to augment faunal abundance while promoting species diversity.