48 resultados para Rock mechanics.

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The understanding of rock breaking and chipping due to the TBM cutter disks mechanism in deep tunnels is considered in this paper. The interest stems from the use of TBMs for the excavation of long Trans-Alpine tunnels. Some tests that simulate the disk cutter action at the tunnel face by means of an indenter, acting on a rock specimen are proposed. The rock specimen is confined through a flat-jack and a confinement-free area on one side of the specimen simulates the formation of a groove near the indenter, like it occurs in TBM excavation conditions. Results show a limited influence of the confinement stress versus the thrust increment required for breaking the rock between the indenter and the free side of the specimen. Numerical modelling of the cutter disk action on confined material has also been carried out in order to investigate further aspects of the fracture initiation. Also in this case the importance of the relative position between disk cutter and groove is pointed out. © 2006 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to determine the fracture toughness of adhesive interfaces between dentine and clinically relevant, thin layers of dental luting cements. Cements tested included a conventional glass-ionomer, F (Fuji I), a resin-modified glass-ionomer, FP (Fuji Plus) and a compomer cement, D (DyractCem). Ten miniature short-bar chevron notch specimens were manufactured for each cement, each comprising a 40 µm thick chevron of lute, between two 1.5 mm thick blocks of bovine dentine, encased in resin composite. The interfacial KIC results (MN/m3/2) were median (range): F; 0.152 (0.14-0.16), FP; 0.306 (0.27-0.37), D; 0.351 (0.31-0.37). Non-parametric statistical analysis showed that the fracture toughness of F was significantly lower (p

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weathering studies have often sought to explain features in terms of a prevailing set of environmental conditions. However, it is clear that in most present-day hot desert regions, the surface rock debris has been exposed to a range of weathering environments and processes. These different weathering conditions can arise in two ways, either from the effects of long-term climate change acting on debris that remains relatively static within the landscape or through the spatial relocation of debris from high to low altitude. Consequently, each fragment of rock may contain a unique weathering-related legacy of damage and alteration — a legacy that may greatly influence its response to present-day weathering activity. Experiments are described in which blocks of limestone, sandstone, granite and basalt are given ‘stress histories’ by subjecting them to varying numbers of heating and freezing cycles as a form of pre-treatment. These imposed stress histories act as proxies for a weathering history. Some blocks were used in a laboratory salt weathering simulation study while others underwent a 2 year field exposure trial at high, mid and low altitude sites in Death Valley, California. Weight loss and ultrasonic pulse velocity measurements suggest that blocks with stress histories deteriorate more rapidly than unstressed samples of the same rock type exposed to the same environmental conditions. Laboratory data also indicate that the result of imposing a known ‘weathering history’ on samples by pre-stressing them is an increase in the amount of fine sediment released during salt weathering over a given period of time in comparison to unstressed samples.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural dolomitic rock has been investigated in the transesterification of C-4 and C-8 triglycerides and olive oil with a view to determining its viability as a solid base catalyst for use in biodiesel synthesis. XRD reveals that the dolomitic rock comprised 77% dolomite and 23% magnesian calcite. The generation of basic sites requires calcination at 900 degrees C, which increases the surface area and transforms the mineral into MgO nanocrystallites dispersed over CaO particles. Calcined dolomitic rock exhibits high activity towards the liquid phase transesterification of glyceryl tributyrate and trioctanoate, and even olive oil, with methanol for biodiesel production.