4 resultados para RhBMP-2
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Time for treating bone fracture using rhBMP-2: a randomised placebo controlled mouse fracture trial.
Resumo:
Although the mechanisms of osteoinduction by bone morphogenic proteins (BMPs) are increasingly understood, the most appropriate time to administer BMPs exogenously is yet to be clarified.The purpose of this study was to investigate when BMP may be administered to a fracture arena to maximise the enhancement of healing.Forty mice with externally fixed left femoral fractures were randomised into four groups: Group I, the control group was given a placebo of 30 ll saline at day 0; Groups II, III and IV were given 30 ll saline plus 2.5 lg rhBMP-2, at post-operative days 0, 4 or 8, respectively.Sequential radiographs were taken at days 0, 8, 16.On day 22 the mice were sacrificed and both femora were harvested for biomechanical assessment in 3-point bending and histological evaluation.Radiographic analysis indicated that healing of fractures in Groups II and III was significantly greater (p <0.05) than those in Groups I and IV, at both 16 and 22 days post-fracture. The highest median bone mineral content at the fracture site was evidenced in Group III and II.Furthermore, Group III also had the highest relative ultimate load values, followed by Groups II, IV and I.Greater percentage peak loads were observed between Group I and both Groups II and III (p <0.05). Histological examination confirmed that at 22 days post-fracture, only fractures in Groups II and III had united with woven bone, and Groups I and IV still had considerable amounts of fibrous tissue and cartilage at the fracture gap.Data presented herein indicates that there is a time after fracture when rhBMP administration is most effective, and this may be at the time of surgery as well as in the early fracture healing phases.
Resumo:
During bone development and repair, angiogenesis, osteogenesis and bone remodelling are closely associated processes that share some common mediators. In the present study non-adherent human bone marrow mononuclear cells under the induction of sRANKL and M-CSF, differentiated into osteoclasts with TRAP positive staining, VNR expression, and Ca-P resorptive activity. The effects of various combinations of rhBMP-2 (0, 3, 30, 300 ng/ml) and rhVEGF (0, 25 ng/ml) on osteoclastogenesis potentials were examined in this experimental system. The percentages of TRAP-positive multiple nucleated cells represent osteoclast differentiation potential and the percentages of resorptive areas in the Ca-P coated plates resemble osteoclast resorption capability. The presence of rhBMP-2 at 30 and 300 ng/ml showed inhibitory effects on osteoclast differentiation and their resorptive capability in the human osteoclast culture system. rhVEGF (25 ng/ml) enhanced the resorptive function of osteoclast whenever it was used alone or combined with 3 ng/ml rhBMP-2. However, rhVEGF induced resorptive function was inhibited by 30 ng/ml and 300 ng/ml rhBMP-2 at a dose-dependent manner. Statistical analysis demonstrated that an interactive effect exists between rhBMP-2 and rhVEGF on human osteoclastogenesis. These findings suggested that an interactive regulation may exist between BMPs and VEGF signaling pathways during osteoclastogenesis, exact mechanisms are yet to be elucidated.