194 resultados para Respiratory Center

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context Extracorporeal membrane oxygenation (ECMO) can support gas exchange in patients with severe acute respiratory distress syndrome (ARDS), but its role has remained controversial. ECMO was used to treat patients with ARDS during the 2009 influenza A(H1N1) pandemic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assessment of quality of life (QOL) is necessary to monitor the course of disease and to assess the effect of new and existing interventions in clinical practice. This will only be achieved if QOL can be measured accurately and routinely. The aim of this study was to demonstrate the methodology involved in the adaptation and shortening of the Chronic Respiratory Disease Questionnaire (CRDQ) in a population of adults with cystic fibrosis (CF). A single interviewer administered the CRDQ to a sample of 45 adult patients (32 males) with CF prior to assessment of spirometric measures of lung function. Those patients whose lung function was stable at the time of study, and who could attend for a retest within 14 days, were asked to complete the questionnaire at a subsequent visit (n=10). The average interval between visits was 7 days (range 5-14 days). Correlations between spirometry and CRDQ dimensions ranged from -0.003 to 0.426. The fatigue, emotion and mastery dimensions showed high internal consistency, and adequate construct validity. In the small number of patients suitable for retest, the results indicated that the dimensions exhibited adequate test retest reliability. In contrast low internal consistency was demonstrated for the dyspnoea dimension. The fatigue, emotion and mastery dimensions could be reduced, in terms of their number of items without a substantial loss in explanatory power. This study suggests that QOL measurement can be made convenient, and so more easily accessible for routine clinical assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out extensive density functional theory (DFT) calculations for possible redox states of the active center in Fe-only hydrogenases. The active center is modeled by [(H(CH(3))S)(CO)(CN(-))Fe(p)(mu-DTN)(mu-CO)Fe(d)(CO)(CN(-))(L)](z) (z is the net charge in the complex; Fe(p)= the proximal Fe, Fe(d) = the distal Fe, DTN = (-SCH(2)NHCH(2)S-), L is the ligand that bonds with the Fed at the trans position to the bridging CO). Structures of possible redox states are optimized, and CO stretching frequencies are calculated. By a detailed comparison of all the calculated structures and the vibrational frequencies with the available experimental data, we find that (i) the fully oxidized, inactive state is an Fe(II)-Fe(II) state with a hydroxyl (OH(-)) group bonded at the Fe(d), (ii) the oxidized, active state is an Fe(II)-Fe(l) complex which is consistent with the assignment of Cao and Hall (J. Am. Chem. Soc. 2001, 123, 3734), and (iii) the fully reduced state is a mixture with the major component being a protonated Fe(l)-Fe(l) complex and the other component being its self-arranged form, Fe(II)-Fe(II) hydride, Our calculations also show that the exogenous CO can strongly bond with the Fe(II)-Fe(l) species, but cannot bond with the Fe(l)-Fe(l) complex. This result is consistent with experiments that CO tends to inhibit the oxidized, active state, but not the fully reduced state. The electronic structures of all the redox states have been analyzed. It is found that a frontier orbital which is a mixing state between the e(g) of Fe and the 2pi of the bridging CO plays a key role concerning the reactivity of Fe-only hydrogenases: (1) it is unoccupied in the fully oxidized, inactive state, half-occupied in the oxidized, active state, and fully occupied in the fully reduced state; (ii) the e(g)-2pi orbital is a bonding state, and this is the key reason for stability of the low oxidation states, such as Fe(l)-Fe(l) complexes; and (iii) in the e(g)-2pi orbital more charge accumulates between the bridging CO and the Fe(d) than between the bridging CO and the Fe(p), and the occupation increase in this orbital will enhance the bonding between the bridging CO and the Fe(d), leading to the bridging-CO shift toward the Fe(d).