4 resultados para Research Platforms

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To determine differences in overall tumor responses measured by volumetric assessment and bioluminescence imaging (BLI) following exposure to uniform and non-uniform radiation fields in an ectopic prostate tumor model.

Materials and methods: Bioluminescent human prostate tumor xenografts were established by subcutaneous implantation into male mice. Tumors were irradiated with uniform or non-uniform field configurations using conventional in vivo irradiation procedures performed using a 225 kVp generator with custom lead shielding. Tumor responses were measured using Vernier calipers and by BLI using an in vivo imaging system. Survival was defined as the time to quadroupling of pre-treatment tumor volume. 

Results: The correlation between BLI and tumor volume measurements was found to be different for un-irradiated (R = 0.61), uniformly irradiated (R = 0.34) and partially irradiated (R = 0.30) tumors. Uniformly irradiated tumors resulted in an average tumor growth delay of 60 days with median survival of 75 days, compared to partially irradiated tumors which showed an average growth delay of 24 days and median survival of 38 days. 

Conclusions: Correlation between BLI and tumor volume measurements is lower for partially irradiated tumors than those exposed to uniform dose distributions. The response of partially irradiated tumors suggests non-uniformity in response beyond physical dose distribution within the target volume. Dosimetric uncertainty associated with conventional in vivo irradiation procedures prohibits their ability to accurately determine tumor response to non-uniform radiation fields and stresses the need for image guided small animal radiation research platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performance evaluation of parallel software and architectural exploration of innovative hardware support face a common challenge with emerging manycore platforms: they are limited by the slow running time and the low accuracy of software simulators. Manycore FPGA prototypes are difficult to build, but they offer great rewards. Software running on such prototypes runs orders of magnitude faster than current simulators. Moreover, researchers gain significant architectural insight during the modeling process. We use the Formic FPGA prototyping board [1], which specifically targets scalable and cost-efficient multi-board prototyping, to build and test a 64-board model of a 512-core, MicroBlaze-based, non-coherent hardware prototype with a full network-on-chip in a 3D-mesh topology. We expand the hardware architecture to include the ARM Versatile Express platforms and build a 520-core heterogeneous prototype of 8 Cortex-A9 cores and 512 MicroBlaze cores. We then develop an MPI library for the prototype and evaluate it extensively using several bare-metal and MPI benchmarks. We find that our processor prototype is highly scalable, models faithfully single-chip multicore architectures, and is a very efficient platform for parallel programming research, being 50,000 times faster than software simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing adoption of cloud computing, social networking, mobile and big data technologies provide challenges and opportunities for both research and practice. Researchers face a deluge of data generated by social network platforms which is further exacerbated by the co-mingling of social network platforms and the emerging Internet of Everything. While the topicality of big data and social media increases, there is a lack of conceptual tools in the literature to help researchers approach, structure and codify knowledge from social media big data in diverse subject matter domains, many of whom are from nontechnical disciplines. Researchers do not have a general-purpose scaffold to make sense of the data and the complex web of relationships between entities, social networks, social platforms and other third party databases, systems and objects. This is further complicated when spatio-temporal data is introduced. Based on practical experience of working with social media datasets and existing literature, we propose a general research framework for social media research using big data. Such a framework assists researchers in placing their contributions in an overall context, focusing their research efforts and building the body of knowledge in a given discipline area using social media data in a consistent and coherent manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern approaches to biomedical research and diagnostics targeted towards precision medicine are generating ‘big data’ across a range of high-throughput experimental and analytical platforms. Integrative analysis of this rich clinical, pathological, molecular and imaging data represents one of the greatest bottlenecks in biomarker discovery research in cancer and other diseases. Following on from the publication of our successful framework for multimodal data amalgamation and integrative analysis, Pathology Integromics in Cancer (PICan), this article will explore the essential elements of assembling an integromics framework from a more detailed perspective. PICan, built around a relational database storing curated multimodal data, is the research tool sitting at the heart of our interdisciplinary efforts to streamline biomarker discovery and validation. While recognizing that every institution has a unique set of priorities and challenges, we will use our experiences with PICan as a case study and starting point, rationalizing the design choices we made within the context of our local infrastructure and specific needs, but also highlighting alternative approaches that may better suit other programmes of research and discovery. Along the way, we stress that integromics is not just a set of tools, but rather a cohesive paradigm for how modern bioinformatics can be enhanced. Successful implementation of an integromics framework is a collaborative team effort that is built with an eye to the future and greatly accelerates the processes of biomarker discovery, validation and translation into clinical practice.