83 resultados para Reduction of losses

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research is progressing fast in the field of the hydrogen assisted hydrocarbon selective catalytic reduction (HC-SCR) over Ag-based catalysts: this paper is a review of the work to date in this area. The addition of hydrogen to the HC-SCR reaction feed over Ag/Al2O3 results in a remarkable improvement in NO (x) conversion using a variety of different hydrocarbon feeds. There is some debate concerning the role that hydrogen has to play in the reaction mechanism and its effect on the form of Ag present during the reaction. Many of the studies use in situ UV-Vis spectroscopy to monitor the form of Ag in the catalyst and appear to indicate that the addition of hydrogen promotes the formation of small Ag clusters which are highly reactive for NO (x) conversion. However, some authors have expressed concern about the use of this technique for these materials and further work is required to address these issues before this technique can be used to give an accurate assessment of the state of Ag during the SCR reaction. A study using in situ EXAFS to probe the H-2 assisted octane-SCR reaction has shown that small Ag particles (containing on average 3 silver atoms) are formed during the SCR reaction but that the addition of H-2 to the feed does not result in any further change in the Ag particle size. This points to the direct involvement of H-2 in the reaction mechanism. Clearly the addition of hydrogen results in a large increase in the number and variety of adsorbed species on the surface of the catalyst during the reaction. Some authors have suggested that conversion of cyanide to isocyanate is the rate-determining step and that hydrogen promotes this conversion. Others have suggested that hydrogen reduces nitrates to more reactive nitrite species which can then activate the hydrocarbon; activation of the hydrocarbon to form acetates has been proposed as the key step. It is probable that all these promotional effects can take place and that it very much depends on the reaction temperature and feed conditions as to which one is most important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltammetric studies of the reduction of oxygen in the room temperature ionic liquid [C(4)dmim][N(Tf)(2)] have revealed a significant positive shift in the back peak potential, relative to that expected for a simple electron transfer. This shift is thought to be due to the strong association of the electrogenerated superoxide anion with the solvent cation. In this work we quantitatively simulate the microdisc electrode voltammetry using a model based upon a one-electron reduction followed by a reversible chemical step, involving the formation of the [C(4)dmim](+)center dot center dot center dot O-2(center dot-) ion-pair, and in doing so we extract a set of parameters completely describing the system. We have simulated the voltammetry in the absence of a following chemical step and have shown that it is impossible to simultaneously fit both the forward and reverse peaks. To further support the parameters extracted from fitting the experimental voltammetry, we have used these parameters to independently simulate the double step chronoamperometric response and found excellent agreement. The parameters used to describe the association of the O-2(center dot-) with the [C(4)dmim](+) were k(f) = 1.4 x 10(3) s(-1) for the first-order rate constant and K-eq = 25 for the equilibrium constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using cyclic voltammetry, the electrochemical reduction of benzoic acid (BZA) has been studied at Pt and Au microelectrodes (10 and 2 mu m diameter) in six room temperature ionic liquids (RTILs), namely [C(2)mim][NTf2], [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][BF4], [C(4)mim][NO3], and [C(4)mim][PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [BF4](-) = tetrafluoroborate, [NO3](-) = nitrate, and [PF6](-) = hexafluorophosphate). In all cases, a main reduction peak was observed, assigned to the reduction of BZA in a CE mechanism, where dissociation of the acid takes place before electron transfer to the dissociated proton. One anodic peak was observed on the reverse sweep, assigned to the oxidation of adsorbed hydrogen, and a reductive

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical reduction of I atm hydrogen sulfide gas (H2S) has been studied at a platinum microelectrode (10 mu m diameter) in five room temperature ionic liquids (RTILs): [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3] and [C(4)mim]][PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [OTf](-) = trifluoromethlysulfonate, [NO3](-) = nitrate, and [PF6](-) = hexafluorophosphate). In all five RTILs, a chemically irreversible reduction peak was observed on the reductive sweep, followed by one or two oxidative peaks on the reverse scan. The oxidation peaks were assigned to the oxidation of SH- and adsorbed hydrogen. In addition, a small reductive peak was observed prior to the large wave in [C(2)mim]][NTf2] only, which may be due to the reduction of a sulfur impurity in the gas. Potential-step chronoamperometry was carried out on the reduction peak of H2S, revealing diffusion coefficients of 3.2, 4.6, 2.4, 2.7, and 3.1 x 10(-11) m(2) s(-1) and solubilities of 529, 236, 537, 438, and 230 mM in [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3], and [C(4)mim]][PF6], respectively. The solubilities of H2S in RTILs are much higher than those reported in conventional molecular solvents, suggesting that RTILs may be very favorable gas sensing media for H2S detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical oxidation of potassium nitrite has been studied in the room temperature ionic liquid (RTIL) [C(2)mim][NTf2] by cyclic voltammetry at platinum electrodes. A chemically irreversible oxidation peak was observed, and a solubility of 7.5(+/- 0.5) mM and diffusion coefficient of 2.0(+/- 0.2) x 10(-11) m(2) s(-1) were calculated from potential step chronoamperometry on the microdisk electrode. A second, and sometimes third, oxidation peak was also observed when the anodic limit was extended, and these were provisionally assigned to the oxidation of nitrogen dioxide (NO2) and nitrate (NO3-), respectively. The electrochemical oxidation of nitrogen dioxide gas (NO2) was also studied by cyclic voltammetry in [C(2)mim][NTf2] on Pt electrodes of various size, giving a solubility of ca. 51(+/- 0.2) mM and diffusion coefficient of 1.6(+/- 0.05) x 10(-10) m(2) s(-1) (at 25 degrees C). It is likely that NO2 exists predominantly as its dimer, N2O4, at room temperature. The oxidation mechanism follows a CE process, which involves the initial dissociation of the dimer to the monomer, followed by a one-electron oxidation. A second, larger oxidation peak was observed at more positive potentials and is thought to be the direct oxidation of N2O4. In addition to understanding the mechanisms of NO2- and NO2 oxidations, this work has implications in the electrochemical detection of nitrite ions and of NO2 gas in RTIL media, the latter which may be of particular use in gas sensing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical oxidation of 1-butyl-3-methylimidazolium nitrate [C(4)mim][NO3] was studied by cyclic voltammetry in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [C(2)mim][NTf2]. A sharp peak was observed on a Pt microelectrode (d = 10 mu m), and a diffusion coefficient at infinite dilution of ca. 2.0 x 10(-11) m(2) s(-1) was obtained. Next, the cyclic voltammetry of sodium nitrate (NaNO3) and potassium nitrate (KNO3) was studied, by dissolving small amounts of solid into the RTIL [ C2mim][ NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 8.8 and 9.0 x 10(-12) m(2) s(-1) and solubilities of 11.9 and 10.8 mM for NaNO3 and KNO3, respectively. The smaller diffusion coefficients for NaNO3 and KNO3 (compared to [C(4)mim][NO3]) may indicate that NO3- is ion-paired with Na+ or K+. This work may have applications in the electroanalytical determination of nitrate in RTIL solutions. Furthermore, a reduction feature was observed for both NaNO3 and KNO3, with additional anodic peaks indicating the formation of oxides, peroxides, superoxides and nitrites. This behaviour is surprisingly similar to that obtained from melts of NaNO3 and KNO3 at high temperatures ( ca. 350 - 500 degrees C), and this observation could significantly simplify experimental conditions required to investigate these compounds. We then used X-ray photoelectron spectroscopy (XPS) to suggest that disodium( I) oxide (Na2O), which has found use as a storage compound for hydrogen, was deposited on a Pt electrode surface following the reduction of NaNO3.