92 resultados para Recurrent neural network
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper is concerned with the analysis of the stability of delayed recurrent neural networks. In contrast to the widely used Lyapunov–Krasovskii functional approach, a new method is developed within the integral quadratic constraints framework. To achieve this, several lemmas are first given to propose integral quadratic separators to characterize the original delayed neural network. With these, the network is then reformulated as a special form of feedback-interconnected system by choosing proper integral quadratic constraints. Finally, new stability criteria are established based on the proposed approach. Numerical examples are given to illustrate the effectiveness of the new approach.
Resumo:
In this paper we propose a novel recurrent neural networkarchitecture for video-based person re-identification.Given the video sequence of a person, features are extracted from each frame using a convolutional neural network that incorporates a recurrent final layer, which allows information to flow between time-steps. The features from all time steps are then combined using temporal pooling to give an overall appearance feature for the complete sequence. The convolutional network, recurrent layer, and temporal pooling layer, are jointly trained to act as a feature extractor for video-based re-identification using a Siamese network architecture.Our approach makes use of colour and optical flow information in order to capture appearance and motion information which is useful for video re-identification. Experiments are conduced on the iLIDS-VID and PRID-2011 datasets to show that this approach outperforms existing methods of video-based re-identification.
https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID
Project Source Code
Resumo:
A neural network based tool has been developed to assist in the process of code transformation. The tool offers advice on appropriate transformations within a knowledge-driven, semi-automatic parallelisation environment. We have identified the essential characteristics of codes relevant to loop transformations. A Kohonen network is used to discover structure in the characterised codes thus revealing new knowledge that may be brought to bear on the mapping between codes and transformations or transformation sequences. A transform selector based on this process has been developed and successfully applied to the parallelisation of sequential codes.
Simulation of Microhardness Profiles for Nitrocarburized Surface Layers by Artificial Neural Network
Resumo:
This paper proposes a novel hybrid forward algorithm (HFA) for the construction of radial basis function (RBF) neural networks with tunable nodes. The main objective is to efficiently and effectively produce a parsimonious RBF neural network that generalizes well. In this study, it is achieved through simultaneous network structure determination and parameter optimization on the continuous parameter space. This is a mixed integer hard problem and the proposed HFA tackles this problem using an integrated analytic framework, leading to significantly improved network performance and reduced memory usage for the network construction. The computational complexity analysis confirms the efficiency of the proposed algorithm, and the simulation results demonstrate its effectiveness
Resumo:
An artificial neural network (ANN) model is developed for the analysis and simulation of the correlation between the properties of maraging steels and composition, processing and working conditions. The input parameters of the model consist of alloy composition, processing parameters (including cold deformation degree, ageing temperature, and ageing time), and working temperature. The outputs of the ANN model include property parameters namely: ultimate tensile strength, yield strength, elongation, reduction in area, hardness, notched tensile strength, Charpy impact energy, fracture toughness, and martensitic transformation start temperature. Good performance of the ANN model is achieved. The model can be used to calculate properties of maraging steels as functions of alloy composition, processing parameters, and working condition. The combined influence of Co and Mo on the properties of maraging steels is simulated using the model. The results are in agreement with experimental data. Explanation of the calculated results from the metallurgical point of view is attempted. The model can be used as a guide for further alloy development.
Resumo:
A three-phase four-wire shunt active power filter for harmonic mitigation and reactive power compensation in power systems supplying nonlinear loads is presented. Three adaptive linear neurons are used to tackle the desired three-phase filter current templates. Another feedforward three-layer neural network is adopted to control the output filter compensating currents online. This is accomplished by producing the appropriate switching patterns of the converter's legs IGBTs. Adequate tracking of the filter current references is obtained by this method. The active filter injects the current required to compensate for the harmonic and reactive components of the line currents, Simulation results of the proposed active filter indicate a remarkable improvement in the source current waveforms. This is reflected in the enhancement of the unified power quality index defined. Also, the filter has exhibited quite a high dynamic response for step variations in the load current, assuring its potential for real-time applications
Resumo:
Modelling and control of nonlinear dynamical systems is a challenging problem since the dynamics of such systems change over their parameter space. Conventional methodologies for designing nonlinear control laws, such as gain scheduling, are effective because the designer partitions the overall complex control into a number of simpler sub-tasks. This paper describes a new genetic algorithm based method for the design of a modular neural network (MNN) control architecture that learns such partitions of an overall complex control task. Here a chromosome represents both the structure and parameters of an individual neural network in the MNN controller and a hierarchical fuzzy approach is used to select the chromosomes required to accomplish a given control task. This new strategy is applied to the end-point tracking of a single-link flexible manipulator modelled from experimental data. Results show that the MNN controller is simple to design and produces superior performance compared to a single neural network (SNN) controller which is theoretically capable of achieving the desired trajectory. (C) 2003 Elsevier Ltd. All rights reserved.