40 resultados para Recombinant Proteins -- therapeutic use

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischaemia-related diseases such as peripheral artery disease and coronary heart disease constitute a major issue in medicine as they affect millions of individuals each year and represent a considerable economic burden to healthcare systems. If the underlying ischaemia is not sufficiently resolved it can lead to tissue damage, with subsequent cell death. Treating such diseases remains difficult and several strategies have been used to stimulate the growth of blood vessels and promote regeneration of ischaemic tissues, such as the use of recombinant proteins and gene therapy. Although these approaches remain promising, they have limitations and results from clinical trials using these methods have had limited success. Recently, there has been growing interest in the therapeutic potential of using a cell-based approach to treat vasodegenerative disorders. In vascular medicine, various stem cells and adult progenitors have been highlighted as having a vasoreparative role in ischaemic tissues. This review will examine the clinical potential of several stem and progenitor cells that may be utilised to regenerate defunct or damaged vasculature and restore blood flow to the ischaemic tissue. In particular, we focus on the therapeutic potential of endothelial progenitor cells as an exciting new option for the treatment of ischaemic diseases. © 2012 BioMed Central Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of 57 synthetic peptides encompassing the entire triple-helical domain of human collagen III was used to locate binding sites for the collagen-binding integrin alpha(2)beta(1). The capacity of the peptides to support Mg2+-dependent binding of several integrin preparations was examined. Wild-type integrins (recombinant alpha(2) I-domain, alpha(2)beta(1) purified from platelet membranes, and recombinant soluble alpha(2)beta(1) expressed as an alpha(2)-Fos/beta(1)-Jun heterodimer) bound well to only three peptides, two containing GXX'GER motifs (GROGER and GMOGER, where O is hydroxyproline) and one containing two adjacent GXX'GEN motifs (GLKGEN and GLOGEN). Two mutant alpha(2) I-domains were tested: the inactive T221A mutant, which recognized no peptides, and the constitutively active E318W mutant, which bound a larger subset of peptides. Adhesion of activated human platelets to GER-containing peptides was greater than that of resting platelets, and HT1080 cells bound well to more of the peptides compared with platelets. Binding of cells and recombinant proteins was abolished by anti-alpha(2) monoclonal antibody 6F1 and by chelation of Mg2+. We describe two novel high affinity integrin-binding motifs in human collagen III (GROGER and GLOGEN) and a third motif (GLKGEN) that displays intermediate activity. Each motif was verified using shorter synthetic peptides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calmodulin is a calcium ion-sensing signalling protein found in eukaryotics. Two calmodulin-like gene sequences were identified in an EST library from adult liver flukes. One codes for a protein (FhCaM1) homologous to mammalian calmodulins (98% identity), whereas the other protein (FhCaM2) has only 41% identity. These genes were cloned into expression vectors and the recombinant proteins were expressed in Escherichia coli. Gel shift assays showed that both proteins bind to calcium, magnesium and zinc ions. Homology models have been built for both proteins. As expected, FhCaM1 has a highly similar structure to other calmodulins. Although FhCaM2 has a similar fold, its surface charge is higher than FhCaM1. One of the potential metal ion-binding sites has lower metal-ion co-ordination capability, while another has an adjacent lysine residue, both of which may decrease the metal-binding affinity. These differences may reflect a specialised role for FhCaM2 in the liver fluke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type I galactosemia is a genetic disorder that is caused by the impairment of galactose-1-phosphate uridylyltransferase (GALT; EC 2.7.7.12). Although a large number of mutations have been detected through genetic screening of the human GALT (hGALT) locus, for many it is not known how they cause their effects. The majority of these mutations are missense, with predicted substitutions scattered throughout the enzyme structure and thus causing impairment by other means rather than direct alterations to the active site. To clarify the fundamental, molecular basis of hGALT impairment we studied five disease-associated variants p.D28Y, p.L74P, p.F171S, p.F194L and p.R333G using both a yeast model and purified, recombinant proteins. In a yeast expression system there was a correlation between lysate activity and the ability to rescue growth in the presence of galactose, except for p.R333G. Kinetic analysis of the purified proteins quantified each variant's level of enzymatic impairment and demonstrated that this was largely due to altered substrate binding. Increased surface hydrophobicity, altered thermal stability and changes in proteolytic sensitivity were also detected. Our results demonstrate that hGALT requires a level of flexibility to function optimally and that altered folding is the underlying reason of impairment in all the variants tested here. This indicates that misfolding is a common, molecular basis of hGALT deficiency and suggests the potential of pharmacological chaperones and proteostasis regulators as novel therapeutic approaches for type I galactosemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: To investigate the effect of treatment with the non-steroidal anti-inflammatory drug Sulindac on the early vascular pathology of diabetic retinopathy in the dog, and it's effect on recognised biochemical indices of hyperglycaemia-related pathophysiology. METHODS: Experimental diabetes (streptozotocin/alloxan) was induced in 22 male beagle dogs and 12 of the animals were assigned at random to receive oral Sulindac (10 mg/kg daily). Age- and sex-matched control animals were maintained as non-diabetic controls. After 4 years, several morphological parameters were quantified in the retinal microvasculature of each animal group using an established stereological method. Also, the following diabetes-associated biochemical parameters were analysed: accumulation of advanced glycation end products (AGEs), red blood cell polyol levels and antioxidant status. RESULTS: Diabetes increased red blood cell sorbitol levels when compared to non-diabetic controls (p<or =0.05), however, there was no difference in sorbitol levels between the untreated and the treated diabetic animals. No significant differences were found in red blood cell myoinositol levels between the three groups of animals. Pentosidine and other AGEs were increased two- to three-fold in the diabetic animals (p<or =0.001) although treatment with Sulindac did not affect their accumulation in diabetic skin collagen or alter diabetes-induced rises in plasma malondialdehyde. Retinal capillary basement membrane volume was significantly increased in the untreated diabetic dogs compared to non-diabetic controls or Sulindac-treated diabetic animals (p<or =0.0001). CONCLUSION/INTERPRETATION: This study has confirmed the beneficial effect of a non-steroidal anti-inflammatory drug on the early vascular pathology of diabetic retinopathy. However the treatment benefit was not dependent on inhibition of polyol pathway activity, advanced glycation, or oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Estrogen acutely activates endothelial nitric oxide synthase (eNOS). However, the identity of the receptors involved in this rapid response remains unclear. Methods and Results We detected an estrogen receptor (ER) transcript in human endothelial cells that encodes a truncated 46-kDa ER (1a-hER-46). A corresponding 46-kDa ER protein was identified in endothelial cell lysates. Transfection of cDNAs encoding the full-length ER (ER-66) and 1a-hER-46 resulted in appropriately sized recombinant proteins identified by anti-ER antibodies. Confocal microscopy revealed that a proportion of both ER-66 and hER-46 was localized outside the nucleus and mediated specific cell-surface binding of estrogen as assessed by FITC-conjugated, BSA-estrogen binding studies. Both ER isoforms colocalized with eNOS and mediated acute activation of eNOS in response to estrogen stimulation. However, estrogen-stimulated transcriptional activation mediated by 1a-hER-46 was much less than with ER-66. Furthermore, 1a-hER-46 inhibited classical hER-66 mediated transcriptional activation in a dominant-negative fashion. Conclusions These findings suggest that expression of an alternatively spliced, truncated ER isoform in human endothelial cells confers a unique ability to mediate acute but not transcriptional responses to estrogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimicrobial peptides play an important role in host defence, particularly in the oral cavity where there is constant challenge by microorganisms. The a-defensin antimicrobial peptides comprise 30–50% of the total protein in the azurophilic granules of human neutrophils, the most abundant of which is human neutrophil peptide 1 (HNP-1). Despite its antimicrobial activity, a limiting factor in the potential therapeutic use of HNP-1 is its chemical synthesis with the correct disulphide topology. In the present study, we synthesised a range of truncated defensin analogues lacking disulphide bridges. All the analogues were modelled on the C-terminal region of HNP-1 and their antimicrobial activity was tested against a range of microorganisms, including oral pathogens. Although there was variability in the antimicrobial activity of the truncated analogues synthesised, a truncated peptide named 2Abz23S29 displayed a broad spectrum of antibacterial activity, effectively killing all the bacterial strains tested. The finding that truncated peptides, modelled on the C-terminal ß-hairpin region of HNP-1 but lacking disulphide bridges, display antimicrobial activity could aid their potential use in therapeutic interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P <0.01 to P <0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method was devised to grow haemopoietic cells in long-term bone marrow culture (LTBMC) which requires only 1 x 10(6) cells/culture. Such miniature cultures were used to study growth patterns of marrow from patients with myelodysplastic syndromes (MDS). Consistent differences in LTBMC cellularity and cellular composition were noted between MDS and normal marrow. These differences were accentuated by rGM-CSF. The criteria which distinguished between and MDS marrows were: cell count at weeks 1 and 4, % neutrophils and % blasts. In 10 patients with unexplained macrocytosis or pancytopenia miniature LTBMC results clearly segregated into either 'normal' or 'MDS' growth patterns. Miniature LTBMC with rGM-CSF may therefore be a useful diagnostic test for early MDS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:


RATIONALE:
We hypothesise that elafin levels in acute lung injury (ALI) decrease over time due, in part, to proteolytic degradation as observed in other lung diseases.
OBJECTIVES:
The aim of this study was to characterise temporal changes in elafin concentration in patients with ALI and to evaluate whether a decrease in elafin levels is due to elevated protease activity.
METHODS:
Bronchoalveolar lavage fluid (BALF) was obtained from patients with ALI within 48 h of onset of ALI (day 0), at day 3 and at day 7. Elafin levels were quantified by ELISA. Elafin susceptibility to proteolytic cleavage by ALI BALF was assessed by Western blot and by high-performance liquid chromatography-mass spectrometry.
MEASUREMENTS AND MAIN RESULTS:
Elafin levels were found to be significantly increased at the onset of ALI compared with healthy volunteers and fell significantly by day 7 compared with day 0. In contrast, levels of secretory leukocyte protease inhibitor did not decrease over time. This decrease in elafin was due to cleavage by the 20S proteasome which was significantly increased in ALI BALF. Incubation of ALI BALF with the proteasome inhibitor epoxomicin confirmed that 20S proteasome protease activity was responsible for proteolytic cleavage of elafin, resulting in diminished anti-elastase activity. In addition, free neutrophil elastase activity significantly increased in ALI BALF from day 0 to day 7.
CONCLUSIONS:
Elafin concentrations fall within the pulmonary compartment over the course of ALI as a result of proteolytic degradation. This loss of elafin may predispose people, in part, to excessive inflammation in ALI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morbidity and mortality have declined only modestly in patients with clinical acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), despite extensive research into the pathophysiology. Current treatment remains primarily supportive with lung-protective ventilation and a fluid conservative strategy. Pharmacologic therapies that reduce the severity of lung injury in preclinical models have not yet been translated to effective clinical treatment options. Consequently, further research in translational therapies is needed. Cell-based therapy with mesenchymal stem cells (MSCs) is one attractive new therapeutic approach. MSCs have the capacity to secrete multiple paracrine factors that can regulate endothelial and epithelial permeability, decrease inflammation, enhance tissue repair, and inhibit bacterial growth. This review will focus on recent studies, which support the potential therapeutic use of MSCs in ALI/ARDS, with an emphasis on the role of paracrine soluble factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to define pathological abnormalities in the peripheral nerve of a large animal model of long-duration type 1 diabetes and also to determine the effects of treatment with sulindac. Detailed morphometric studies were performed to define nerve fiber and endoneurial capillary pathology in 6 control dogs, 6 type 1 diabetic dogs treated with insulin, and 6 type 1 diabetic dogs treated with insulin and sulindac for 4 years. Myelinated fiber and regenerative cluster density showed a non-significant trend toward a reduction in diabetic compared to control animals, which was prevented by treatment with sulindac. Unmyelinated fiber density did not differ among groups. However, diabetic animals showed a non-significant trend toward an increase in axon diameter (p <0.07), with a shift of the size frequency distribution towards larger axons, which was not prevented by treatment with sulindac. Endoneurial capillary density and luminal area showed a non-significant trend toward an increase in diabetic animals, which was prevented with sulindac treatment. Endoneurial capillary basement membrane area was significantly increased (p <0.05) in diabetic animals, but was not prevented with sulindac treatment. We conclude that the type 1 diabetic dog demonstrates minor structural abnormalities in the nerve fibers and endoneurial capillaries of the sciatic nerve, and treatment with sulindac ameliorates some but not all of these abnormalities.