6 resultados para Rayleigh Random Variables
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We propose two simple evaluation methods for time varying density forecasts of continuous higher dimensional random variables. Both methods are based on the probability integral transformation for unidimensional forecasts. The first method tests multinormal densities and relies on the rotation of the coordinate system. The advantage of the second method is not only its applicability to any continuous distribution but also the evaluation of the forecast accuracy in specific regions of its domain as defined by the user’s interest. We show that the latter property is particularly useful for evaluating a multidimensional generalization of the Value at Risk. In simulations and in an empirical study, we examine the performance of both tests.
Resumo:
It is shown that, when expressing arguments in terms of their logarithms, the Laplace transform of a function is related to the antiderivative of this function by a simple convolution. This allows efficient numerical computations of moment generating functions of positive random variables and their inversion. The application of the method is straightforward, apart from the necessity to implement it using high-precision arithmetics. In numerical examples the approach is demonstrated to be particularly useful for distributions with heavy tails, Such as lognormal, Weibull, or Pareto distributions, which are otherwise difficult to handle. The computational efficiency compared to other methods is demonstrated for an M/G/1 queueing problem.
Resumo:
This paper investigates the computation of lower/upper expectations that must cohere with a collection of probabilistic assessments and a collection of judgements of epistemic independence. New algorithms, based on multilinear programming, are presented, both for independence among events and among random variables. Separation properties of graphical models are also investigated.
Resumo:
The statistical properties of the multivariate GammaGamma (ΓΓ) distribution with arbitrary correlation have remained unknown. In this paper, we provide analytical expressions for the joint probability density function (PDF), cumulative distribution function (CDF) and moment generation function of the multivariate ΓΓ distribution with arbitrary correlation. Furthermore, we present novel approximating expressions for the PDF and CDF of the su m of ΓΓ random variables with arbitrary correlation. Based on this statistical analysis, we investigate the performance of radio frequency and optical wireless communication systems. It is noteworthy that the presented expressions include several previous results in the literature as special cases.
Willingness to Pay for Rural Landscape Improvements: Combining Mixed Logit and Random-Effects Models
Resumo:
This paper reports the findings from a discrete-choice experiment designed to estimate the economic benefits associated with rural landscape improvements in Ireland. Using a mixed logit model, the panel nature of the dataset is exploited to retrieve willingness-to-pay values for every individual in the sample. This departs from customary approaches in which the willingness-to-pay estimates are normally expressed as measures of central tendency of an a priori distribution. Random-effects models for panel data are subsequently used to identify the determinants of the individual-specific willingness-to-pay estimates. In comparison with the standard methods used to incorporate individual-specific variables into the analysis of discrete-choice experiments, the analytical approach outlined in this paper is shown to add considerable explanatory power to the welfare estimates.
Resumo:
This article applies the panel stationarity test with a break proposed by Hadri and Rao (2008) to examine whether 14 macroeconomic variables of OECD countries can be best represented as random walk or stationary fluctuations around a deterministic trend. In contrast to previous studies, based essentially on visual inspection of the break type or just applying the most general break model, we use a model selection procedure based on BIC. We do this for each time series so that heterogeneous break models are allowed for in the panel. Our results suggest, overwhelmingly, that if we account for a structural break, cross-sectional dependence and choose the break models to be congruent with the data, then the null of stationarity cannot be rejected for all the 14 macroeconomic variables examined in this article. This is in sharp contrast with the results obtained by Hurlin (2004), using the same data but a different methodology.