43 resultados para Rare Earths

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protonated betaine bis(trifluoromethylsulfonyl) imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium( II) oxide, mercury( II) oxide, nickel( II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese( II) oxide, and silver( I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis( trifluoromethylsulfonyl) imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C ( temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis( trifluoromethylsulfonyl) imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The co-occurrence of two rare recessive genetic conditions in apparently unrelated individuals or families is extremely rare. Two geographically distant and apparently unrelated families were identified in which individuals were simultaneously affected by two rare recessive mendelian syndromes, Papillon-Lefevre syndrome and type 1 oculocutaneous albinism. The families were tested for mutations in the causative genes, cathepsin C (CTSC) and tyrosinase (TYR), respectively, by direct sequencing. To assess the relationship of the two families, both families were tested for polymorphisms at eight microsatellite markers spanning both CTSC and TYR loci. Independent mutations (c.318-1G-->A and c.817G-->C/p.W272C) were identified in CTSC and TYR, respectively, that were shared by the affected individuals in both families. The two affected genes lie close together on chromosome bands 11q14.2-14.3, and studies with linked genetic markers suggested that the families shared a small chromosomal segment carrying both mutations that had been transmitted intact from a remote common ancestor. The co-occurrence of the two rare diseases in multiple families depends on their shared chromosomal location, but not on any shared pathogenic mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissolution process of metal complexes in ionic liquids was investigated by a multiple-technique approach to reveal the solvate species of the metal in solution. The task-specific ionic liquid betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) is able to dissolve stoichiometric amounts of the oxides of the rare-earth elements. The crystal structures of the compounds [Eu-2(bet)(8)(H2O)(4)][Tf2N](6), [Eu-2(bet)(8)(H2O)(2)][Tf2N](6)center dot 2H(2)O, and [Y-2(bet)(6)(H2O)(4)][Tf2N](6) were found to consist of dimers. These rare-earth complexes are well soluble in the ionic liquids [Hbet][Tf2N] and [C(4)mim]- [Tf2N] (C(4)mim = 1-butyl-3-methylimidazolium). The speciation of the metal complexes after dissolution in these ionic liquids was investigated by luminescence spectroscopy, H-1, C-13, and Y-89 NMR spectroscopy, and by the synchrotron techniques EXAFS (extended X-ray absorption fine structure) and HEXS (high-energy X-ray scattering). The combination of these complementary analytical techniques reveals that the cationic dimers decompose into monomers after dissolution of the complexes in the ionic liquids. Deeper insight into the solution processes of metal compounds is desirable for applications of ionic liquids in the field of electrochemistry, catalysis, and materials chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ferrocene-derivatives bis(ferrocenyl-ethynyl)-1,10-phenanthroline (Fc(2)phen) and ferrocenoyltrifluoroacetone (Hfta) have been used to synthesize ferrocene-containing rare-earth beta-diketonate complexes. The complexes [Ln(tta)(3)(Fc(2)phen)] and [Ln(fta)(3)(phen)] (where Ln = La, Nd, Eu, Yb) show structural similarities to the tris(2-thenoyltrifluoroacetonate)(1,10-phenanthroline)lanthanide(III) complexes, [Ln(tta)(3)(phen)]. The coordination number of the lanthanide ion is 8, and the coordination sphere can be described as a distorted dodecahedron. However, the presence of the ferrocene moieties shifts the ligand absorption bands of the rare-earth complexes to longer wavelengths so that the complexes can be excited not only by ultraviolet radiation but also by visible light of wavelengths up to 420 nm. Red photoluminescence is observed for the europium(III) complexes and near-infrared photoluminescence for the neodymium(III) and ytterbium(III) complexes. The presence of the ferrocene groups makes the rare-earth complexes hydrophobic and well-soluble in apolar organic solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-soluble, stable, and easily synthesizable 1:4 complexes of rare-earth ions with 8-hydroxy-5-nitroquinolinate ligands have been prepared. These complexes can be sensitized by visible light with wavelengths up to 480 nm and show near-infrared emission in aqueous solution. The incorporation of a nitro group in the quinoline moiety shifts its absorption bands to longer wavelengths and also increases its molar absorptivity by a factor of 2.5, thereby significantly enhancing its light-harvesting power. The presence of the nitro group also increases the solubility of the resulting complexes, making them water-soluble. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unique absorption properties of the 9-hydroxyphenalen-1-one (HPHN) ligand have been exploited to obtain visible-light-sensitizable rare-earth complexes in 1: 3 and 1: 4 metal-to-ligand ratios. In both stoichiometries (1:3,tris,Ln(PHN)3;1:4, tetrakis, A[ Ln( PHN)(4)], with Ln being a trivalent rare-earth ion and A being a monovalent cation), the complexes of Nd(III),Er( III), and Yb(III) show typical near-infrared luminescence upon excitation with visible light with wavelengths up to 475 nm. The X-ray crystal structures of the tris complexes show solvent coordination to the central rare-earth ion, whereas in the tetrakis complexes, the four PHN-ligands form a protective shield around the central ion, preventing small solvent molecules from coordinating to the rare-earth ion, at least in the solid state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared-emitting rare-earth chelates based on 8-hydroxyquinoline have appeared frequently in recent literature, because they are promising candidates for active components in near-infrared-luminescent optical devices, such as optical amplifiers, organic light-emitting diodes, .... Unfortunately, the absence of a full structural investigation of these rare-earth quinolinates is hampering the further development of rare-earth quinolinate based materials, because the luminescence output cannot be related to the structural properties. After an elaborate structural elucidation of the rare-earth quinolinate chemistry we can conclude that basically three types of structures can be formed, depending on the reaction conditions: tris complexes, corresponding to a 1:3 metal-to-ligand ratio, tetrakis complexes, corresponding to a 1:4 metal-to-ligand ratio, and trimeric complexes, with a 3:8 metal-to-ligand ratio. The intensity of the emitted near-infrared luminescence of the erbium(Ill) complexes is highest for the tetrakis complexes of the dihalogenated 8-hydroxyquinolinates.