3 resultados para Randomized Map Prediction (RMP)

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we investigate the influence of a power-law noise model, also called noise, on the performance of a feed-forward neural network used to predict time series. We introduce an optimization procedure that optimizes the parameters the neural networks by maximizing the likelihood function based on the power-law model. We show that our optimization procedure minimizes the mean squared leading to an optimal prediction. Further, we present numerical results applying method to time series from the logistic map and the annual number of sunspots demonstrate that a power-law noise model gives better results than a Gaussian model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the sensitivity of a MAP configuration of a discrete probabilistic graphical model with respect to perturbations of its parameters. These perturbations are global, in the sense that simultaneous perturbations of all the parameters (or any chosen subset of them) are allowed. Our main contribution is an exact algorithm that can check whether the MAP configuration is robust with respect to given perturbations. Its complexity is essentially the same as that of obtaining the MAP configuration itself, so it can be promptly used with minimal effort. We use our algorithm to identify the largest global perturbation that does not induce a change in the MAP configuration, and we successfully apply this robustness measure in two practical scenarios: the prediction of facial action units with posed images and the classification of multiple real public data sets. A strong correlation between the proposed robustness measure and accuracy is verified in both scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting the next location of a user based on their previous visiting pattern is one of the primary tasks over data from location based social networks (LBSNs) such as Foursquare. Many different aspects of these so-called check-in profiles of a user have been made use of in this task, including spatial and temporal information of check-ins as well as the social network information of the user. Building more sophisticated prediction models by enriching these check-in data by combining them with information from other sources is challenging due to the limited data that these LBSNs expose due to privacy concerns. In this paper, we propose a framework to use the location data from LBSNs, combine it with the data from maps for associating a set of venue categories with these locations. For example, if the user is found to be checking in at a mall that has cafes, cinemas and restaurants according to the map, all these information is associated. This category information is then leveraged to predict the next checkin location by the user. Our experiments with publicly available check-in dataset show that this approach improves on the state-of-the-art methods for location prediction.