224 resultados para ROTATIONAL CORE LOSSES
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Aims.We aim to provide the atmospheric parameters and rotational velocities for a large sample of O- and early B-type stars, analysed in a homogeneous and consistent manner, for use in constraining theoretical models. Methods: Atmospheric parameters, stellar masses, and rotational velocities have been estimated for approximately 250 early B-type stars in the Large (LMC) and Small (SMC) Magellanic Clouds from high-resolution VLT-FLAMES data using the non-LTE TLUSTY model atmosphere code. This data set has been supplemented with our previous analyses of some 50 O-type stars (Mokiem et al. 2006, 2007) and 100 narrow-lined early B-type stars (Hunter et al. 2006; Trundle et al. 2007) from the same survey, providing a sample of ~400 early-type objects. Results: Comparison of the rotational velocities with evolutionary tracks suggests that the end of core hydrogen burning occurs later than currently predicted and we argue for an extension of the evolutionary tracks. We also show that the large number of the luminous blue supergiants observed in the fields are unlikely to have directly evolved from main-sequence massive O-type stars as neither their low rotational velocities nor their position on the H-R diagram are predicted. We suggest that blue loops or mass-transfer binary systems may populate the blue supergiant regime. By comparing the rotational velocity distributions of the Magellanic Cloud stars to a similar Galactic sample, we find that (at 3s confidence level) massive stars (above 8 M?) in the SMC rotate faster than those in the solar neighbourhood. However there appears to be no significant difference between the rotational velocity distributions in the Galaxy and the LMC. We find that the v sin i distributions in the SMC and LMC can modelled with an intrinsic rotational velocity distribution that is a Gaussian peaking at 175 km s-1 (SMC) and 100 km s-1 (LMC) with a 1/e half width of 150 km s-1. We find that in NGC 346 in the SMC, the 10-25 M? main-sequence stars appear to rotate faster than their higher mass counterparts. It is not expected that O-type stars spin down significantly through angular momentum loss via stellar winds at SMC metallicity, hence this could be a reflection of mass dependent birth spin rates. Recently Yoon et al. (2006) have determined rates of GRBs by modelling rapidly rotating massive star progenitors. Our measured rotational velocity distribution for the 10-25 M? stars is peaked at slightly higher velocities than they assume, supporting the idea that GRBs could come from rapid rotators with initial masses as low as 14 M? at low metallicities.
Resumo:
The explosion of sub-Chandrasekhar mass white dwarfs via the double detonation scenario is a potential explanation for type Ia supernovae. In this scenario, a surface detonation in a helium layer initiates a detonation in the underlying carbon/oxygen core leading to an explosion. For a given core mass, a lower bound has been determined on the mass of the helium shell required for dynamical burning during a helium flash, which is a necessary prerequisite for detonation. For a range of core and corresponding minimum helium shell masses, we investigate whether an assumed surface helium detonation is capable of triggering a subsequent detonation in the core even for this limiting case. We carried out hydrodynamic simulations on a co-expanding Eulerian grid in two dimensions assuming rotational symmetry. The detonations are propagated using the level-set approach and a simplified scheme for nuclear reactions that has been calibrated with a large nuclear network. The same network is used to determine detailed nucleosynthetic abundances in a post-processing step. Based on approximate detonation initiation criteria in the literature, we find that secondary core detonations are triggered for all of the simulated models, ranging in core mass from 0.810 up to 1.385 M? with corresponding shell masses from 0.126 down to 0.0035 M?. This implies that, as soon as a detonation triggers in a helium shell covering a carbon/oxygen white dwarf, a subsequent core detonation is virtually inevitable.
Resumo:
This paper reports the progress made at JET-ILW on integrating the requirements of the reference ITER baseline scenario with normalized confinement factor of 1, at a normalized pressure of 1.8 together with partially detached divertor whilst maintaining these conditions over many energy confinement times. The 2.5 MA high triangularity ELMy H-modes are studied with two different divertor configurations with D-gas injection and nitrogen seeding. The power load reduction with N seeding is reported. The relationship between an increase in energy confinement and pedestal pressure with triangularity is investigated. The operational space of both plasma configurations is studied together with the ELM energy losses and stability of the pedestal of unseeded and seeded plasmas. The achievement of stationary plasma conditions over many energy confinement times is also reported.
Resumo:
The object of this work is to assess the suitability of metallocene catalyzed linear low-density polyethylenes for the rotational molding of foams and to link the material and processing conditions to cell morphology and part mechanical properties (flexural and compressive strength). Through adjustments to molding conditions, the significant processing and physical material parameters that optimize metallocene catalyzed linear low-density polyethylene foam structure have been identified. The results obtained from an equivalent conventional grade of Ziegler-Natta catalyzed linear low-density polyethylene are used as a basis for comparison. The key findings of this study are that metallocene catalyzed LLDPE can be used in rotational foam molding to produce a foam that will perform as well as a ZieglerNatta catalyzed foam and that foam density Is by far the most Influential factor over mechanical properties of foam. © 2004 Society of Plastics Engineers.
A Numerical Analysis of the Flow Fields and Losses in Vaned and Vaneless Stators for Radial Turbines