155 resultados para REFRACCIÓN OCULAR

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immunolocalization and gene expression of vascular endothelial growth factor (VEGF) and its cognate tyrosine kinase receptors, Flt-1 and KDR, has been studied in ocular melanomas and retinoblastomas using in situ hybridization and immunohistochemistry. Tumour-related alterations in VEGF/VEGF-receptor expression have also been examined in separate and uninvolved iris, retina and choroid of the same eyes. Although VEGF immunoreactivity in the normal retina was virtually absent, low-level VEGF expression was evident in the ganglion cell-bodies, Müller cells and in a distinct population of amacrine cells. VEGF gene expression was absent in the iris and choroid of normal eyes. In tumour-bearing eyes, high levels of VEGF protein and gene expression were observed within the vascularized regions of the tumours, while the adjacent retina and choroid showed increased VEGF levels when compared with normals. Flt-1 and KDR gene expression and immunolocalization occurred in VEGF-expressing ganglion, Müller and amacrine cells in normal eyes. Within the intra-ocular tumours, VEGF-receptor gene expression and protein was evident in the endothelial cells and also in cells close to the vessels, while in the adjacent retina, Flt-1 and KDR levels were elevated over normal, especially in the blood vessels. Flt-1 and KDR were both observed at elevated levels in the choroid and iris blood vessels. This study suggests that VEGF, Flt-1 and KDR are expressed by neural, glial and vascular elements within normal human retina. Intra-ocular tumours demonstrate a high level of VEGF and VEGF-receptor expression; within uninvolved, spatially separate retina, choroid and iris in the same eyes, expression is also elevated, especially within the vasculature. Retinal vascular endothelia may respond to high intra-ocular levels of VEGF by increasing expression of their VEGF receptors, a phenomenon which could have relevance to neoplasm-related ocular neovascularization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local control of blood flow to the photoreceptors and associated neurons in the retina is largely achieved through changes in tone within the choroidal and retinal arterioles. This is primarily achieved through changes in [Ca2+] within the smooth muscle of these vessels, which regulates cell contraction and vascular constriction. Here we review some aspects of the cell physiology involved in these Ca2+-signaling processes, with particular emphasis on the molecular mechanisms involved. Ca2+-influx across the plasma membrane can occur via a variety of Ca2+-channels, including voltage-operated, store-operated, and receptor-operated channels. Ca2+ may also be released from intracellular stores via RyR-, or IP3R-gated channels in the SR membrane. Using high-speed confocal Ca2+-imaging, we have also demonstrated that the resulting signals are far from homogeneous, with spontaneous activity in retinal arterioles being characterized by both localized Ca2+-sparks and more global Ca2+-waves and oscillations. These signals may be specifically and differentially targeted, for example, to Ca2+-sensitive ion channels (stimulus-excitation coupling), or pathways regulating contraction (stimulus-contraction coupling). Exploring the role of changes in such targeting in disease states will provide exciting opportunities for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of advanced glycation end products (AGEs) is a key pathophysiological event with links to a range of important human diseases. It is now clear that AGEs may act as mediators, not only of diabetic complications(1 2) but also of widespread age related pathology such as Alzheimer's disease,(3) decreased skin elasticity,(4) (5) male erectile dysfunction,(6) (7) pulmonary fibrosis,(8) and atherosclerosis.(9 10) Since many cells and tissues of the eye are profoundly influenced by both diabetes and ageing, it is fitting that advanced glycation is now receiving considerable attention as a possible modulator in important visual disorders. An increasing number of reports confirm widespread AGE accumulation at sites of known ocular pathology and demonstrate how these products mediate crosslinking of long lived molecules in the eye. Such studies also underscore the putative pathophysiological role of advanced glycation in ocular cell dysfunction in vitro and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed whether quantitative analysis of Doppler flow velocity waveforms is able to identify subclinical microvascular abnormalities in SLE and whether eigenvector analysis can detect changes not detectable using the resistive index (RI). Fifty-four SLE patients with no conventional cardiovascular risk factors, major organ involvement or retinopathy were compared to 32 controls. Flow velocity waveforms were obtained from the ophthalmic artery (OA), central retinal artery (CRA) and common carotid artery (CA). The waveforms were analysed using eigenvector decomposition and compared between groups at each arterial site. The RI was also determined. The RI was comparable between groups. In the OA and CRA, there were significant differences in the lower frequency sinusoidal components (P <0.05 for each component). No differences were apparent in the CA between groups. Eigenvector analysis of Doppler flow waveforms, recorded in proximity of the terminal vascular bed, identified altered ocular microvascular haemodynamics in SLE. Altered waveform structure could not be identified by changes in RI, the traditional measure of downstream vascular resistance. This analytical approach to waveform analysis is more sensitive in detecting preclinical microvascular abnormalities in SLE. It may hold potential as a useful tool for assessing disease activity, response to treatment, and predicting future vascular complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Waveform analysis has been used to assess vascular resistance and predict cardiovascular events. We aimed to identify microvascular abnormalities in patients with impaired glucose tolerance (IGT) using ocular waveform analysis. The effects of pioglitazone were also assessed. Methods: Forty patients with IGT and twenty-four controls were studied. Doppler velocity recordings were obtained from the central retinal, ophthalmic and common carotid arteries, and sampled at 200 Hz. A discrete wavelet-based analysis method was employed to quantify waveforms. The resistive index (RI),was also determined. Patients with IGT were randomised to pioglitazone or placebo and measurements repeated after 12 weeks treatment. Results: In the ocular waveforms, significant differences in power spectra were observed in frequency band four (corresponding to frequencies between 6.25 and 12.50 Hz) between groups (p