14 resultados para QUADRUPOLE STORAGE-RING
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We investigate the backflow of information in a system with a second-order structural phase transition, namely, a quasi-one-dimensional Coulomb crystal. Using standard Ramsey interferometry which couples a target ion (the system) to the rest of the chain (a phononic environment), we study the non-Markovian character of the resulting open system dynamics. We study two different time scales and show that the backflow of information pinpoints both the phase transition and different dynamical features of the chain as it approaches criticality. We also establish an exact link between the backflow of information and the Ramsey fringe visibility.
Resumo:
A string of repulsively interacting particles exhibits a phase transition to a zigzag structure, by reducing the transverse trap potential or the interparticle distance. Based on the emergent symmetry Z2 it has been argued that this instability is a quantum phase transition, which can be mapped to an Ising model in transverse field. An extensive Density Matrix Renormalization Group analysis is performed, resulting in an high-precision evaluation of the critical exponents and of the central charge of the system, confirming that the quantum linear-zigzag transition belongs to the critical Ising model universality class. Quantum corrections to the classical phase diagram are computed, and the range of experimental parameters where quantum effects play a role is provided. These results show that structural instabilities of one-dimensional interacting atomic arrays can simulate quantum critical phenomena typical of ferromagnetic systems.
Resumo:
Absolute cross sections for single and double detachment from H– following electron impact have been measured over a range of collision energies from the thresholds to 170 eV. The measurements were made using a magnetic storage ring. The ions in the ring were merged with a monoenergetic electron beam and neutral and positively charged fragments were detected. We cover larger energy ranges than in many of the previous experiments, and this is the first time both single and double detachment have been measured simultaneously. This allows us to present accurate ratios between the single and double detachment cross sections. On the basis of these ratio measurements we discuss possible mechanisms leading to double detachment.
Resumo:
We present a technique for measuring the radiative lifetimes of metastable states of negative ions that involves the use of a heavy-ion storage ring. The method has been applied to investigate the radiative decay of the np3 2P1/2 levels of Te–(n=5) and Se–(n=4) and the 3p3 2D state of Si– for which the J=3/2 and 5/2 levels were unresolved. All of these states are metastable and decay primarily by emission of E2 and M1 radiation. Multi Configuration Dirac-Hartree-Fock calculations of rates for the transitions in Te– and Se– yielded lifetimes of 0.45 s and 4.7 s, respectively. The measured values agree well with these predicted values. In the case of the 2D state of Si–, however, our measurement was only able to set a lower limit on the lifetime. The upper limit of the lifetime that can be measured with our apparatus is set by how long the ions can be stored in the ring, a limit determined by the rate of collisional detachment. Our lower limit of 1 min for the lifetime of the 2D state is consistent with both the calculated lifetimes of 162 s for the 2D3/2 level and 27.3 h for the 2D5/2 level reported by O'Malley and Beck and 14.5 h and 12.5 h, respectively, from our Breit-Pauli calculations.
Resumo:
Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH2CHCNH+, have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at~2meV relative kinetic energy about 50% of the DR events involve only ruptures of X–H bonds (where X=C or N)while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H2). The absolute DR cross section has been investigated for relative kinetic energies ranging from ~1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 × 10-6 (T/300)-0.80 cm3 s-1 for electron temperatures ranging from ~10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan’s upper atmosphere are discussed.
Resumo:
In this report we show first results on dielectronic recombination (DR) measurements with H-like uranium U91+. The experiments were conducted at the heavy ion storage ring ESR of GSI. The electron cooler of the ESR was used as a target for free electrons. Stochastic pre-cooling of the stored ion beam was employed in order to accomplish high-energy resolution at the necessary high electron-ion collision energies of more than 64 keV. For the DR of U91+ this novel technique enabled us to measure for the first time the KLL-DR process and even to resolve the individual j-j' fine structure components of the KLjLj' resonances. The experimental data are compared with fully relativistic Multi-Configuration Dirac-Fock (DR-MCDF) calculations. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Recent advances in the development of 2D microstrip detectors open up new possibilities for hard x-ray spectroscopy, in particular for polarization studies. These detectors make ideal Compton polarimeters, which enable us to study precisely the polarization of hard x-rays. Here, we present recent results from measurements of Radiative Electron Capture into the K-shell of highly-charged uranium ions. The experiments were performed with a novel 2D Si(Li) Compton polarimeter at the Experimental Storage Ring at GSI. Stored and cooled beams of U91+ and U92+ ions, with kinetic energies of 43 MeV/u and 96 MeV/u respectively, were crossed with a hydrogen gasjet. The preliminary data analysis shows x-rays from the K-REC process, emitted perpendicularly to the ion beam, to be strongly linearly polarized.
Resumo:
At the heavy ion storage ring CRYRING in Stockholm, Sweden, we have investigated the dissociative recombination of DCOOD2+ at low relative kinetic energies, from ~1 meV to 1 eV. The thermal rate coefficient has been found to follow the expression k(T) = 8.43 × 10-7 (T/300)^-0.78 cm3 s-1 for electron temperatures, T, ranging from ~10 to ~1000 K. The branching fractions of the reaction have been studied at ~2 meV relative kinetic energy. It has been found that ~87% of the reactions involve breaking a bond between heavy atoms. In only 13% of the reactions do the heavy atoms remain in the same product fragment. This puts limits on the gas-phase production of formic acid, observed in both molecular clouds and cometary comae. Using the experimental results in chemical models of the dark cloud, TMC-1, and using the latest release of the UMIST Database for Astrochemistry improves the agreement with observations for the abundance of formic acid. Our results also strengthen the assumption that formic acid is a component of cometary ices.
Resumo:
Absolute rate coefficients for dielectronic recombination (DR) of H-like U91+ ions have been measured. The electron-ion merged-beam technique at a heavy-ion storage ring was employed using a stochastically cooled ion beam. Thereby, the previously accessible electron-ion collision energies could be greatly extended to the range 63-90 keV. High-resolution DR spectra were measured covering all KLL and KLM resonances. For the resonance strengths, excellent agreement between relativistic theory and experiment is found only if the Breit contribution to the electron-electron interaction is included in the calculations. For the KL1/2L1/2 and KL1/2M1/2 groups the Breit contribution amounts to 44% of their total resonance strengths.
Resumo:
Dielectronic recombination was investigated for He+, the simplest ion for which this process is possible. This work was done using the light-ion storage ring and electron cooler at the Indiana University Cyclotron Facility. Resonant recombination yields resulting from 1s +e- --> nln'l' transitions were observed with sufficient resolution (about 1 eV in the center of mass) to isolate and obtain cross sections for the 2s 2p 3P0 and 2p2 1D terms. The measured cross sections, integrated over the DELTAn = 1 2ln'l' states, agree in magnitude with theoretical calculations. Additionally, DELTAn = 2 dielectronic recombination events associated with 3ln'l' intermediate states were observed.
Effects of Charge Location on the Absorptions and Lifetimes of Protonated Tyrosine Peptides in Vacuo
Resumo:
Nearby charges affect the electronic energy levels of chromophores, with the extent of the effect being determined by the magnitude of the charge and degree of charge-chromophore separation. The molecular configuration dictates the charge chromophore distance. Hence, in this study, we aim to assess how the location of the charge influences the absorption of a set of model protonated and diprotonated peptide ions, and whether spectral differences are large enough to be identified. The studied ions were the dipeptide YK, the tripeptide KYK (Y = tyrosine; K = lysine) and their complexes with 18-crown-6-ether (CE). The CE targets the ammonium group by forming internal ionic hydrogen bonds and limits the folding of the peptide. In the tripeptide, the distance between the chromophore and the backbone ammonium is enlarged relative to that in the dipeptide. Experiments were performed in an electrostatic ion storage ring using a tunable laser system, and action spectra based on lifetime measurements were obtained in the range from 210 to 310 nm. The spectra are all quite similar though there seems to be some changes in the absorption band between 210 and 250 nm, while in the lower energy band all ions had a maximum absorption at similar to 275 nm. Lifetimes after photoexcitation were found to shorten upon protonation and lengthen upon CE complexation, in accordance with the increased number of degrees of freedom and an increase in activation energies for dissociation as the mobile proton model is no longer operative.
Resumo:
In this paper, we discuss and evaluate two proposed metro wavelength division multiplexing (WDM) ring network architectures for variable-length packet traffic in storage area networks (SANs) settings. The paper begins with a brief review of the relevant architectures and protocols in the literature. Subsequently, the network architectures along with their medium access control (MAC) protocols are described. Performance of the two network architectures is studied by means of computer simulation in terms of their queuing delay, node throughput and proportion of packets dropped. The network performance is evaluated under symmetric and asymmetric traffic scenarios with Poisson and self-similar traffic. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
With increasing demands on storage devices in the modern communication environment, the storage area network (SAN) has evolved to provide a direct connection allowing these storage devices to be accessed efficiently. To optimize the performance of a SAN, a three-stage hybrid electronic/optical switching node architecture based on the concept of a MPLS label switching mechanism, aimed at serving as a multi-protocol label switching (MPLS) ingress label edge router (LER) for a SAN-enabled application, has been designed. New shutter-based free-space multi-channel optical switching cores are employed as the core switch fabric to solve the packet contention and switching path conflict problems. The system-level node architecture design constraints are evaluated through self-similar traffic sourced from real gigabit Ethernet network traces and storage systems. The extension performance of a SAN over a proposed WDM ring network, aimed at serving as an MPLS-enabled transport network, is also presented and demonstrated.