12 resultados para Protein therapeutics

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Silicone elastomer systems have previously been shown to offer potential for the sustained release of protein therapeutics. However, the general requirement for the incorporation of large amounts of release enhancing solid excipients to achieve therapeutically effective release rates from these otherwise hydrophobic polymer systems can detrimentally affect the viscosity of the precure silicone elastomer mixture and its curing characteristics. The increase in viscosity necessitates the use of higher operating pressures in manufacture, resulting in higher shear stresses that are often detrimental to the structural integrity of the incorporated protein. The addition of liquid silicones increases the initial tan delta value and the tan delta values in the early stages of curing by increasing the liquid character (G '') of the silicone elastomer system and reducing its elastic character (G'), thereby reducing the shear stress placed on the formulation during manufacture and minimizing the potential for protein degradation. However, SEM analysis has demonstrated that if the liquid character of the silicone elastomer is too high, the formulation will be unable to fill the mold during manufacture. This study demonstrates that incorporation of liquid hydroxy-terminated polydimethylsiloxanes into addition-cure silicone elastomer-covered rod formulations can both effectively lower the viscosity of the precured silicone elastomer and enhance the release rate of the model therapeutic protein bovine serum albumin. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicone elastomer systems have been shown to offer potential for the fabrication of medical devices and sustained release drug delivery devices comprising low molecular weight drugs and protein therapeutics. For drug delivery systems in particular, there is often no clear rationale for selection of the silicone elastomer grade, particularly in respect of optimizing the manufacturing conditions to ensure thermal stability of the active agent and short cycle times. In this study, the cure characteristics of a range of addition-cure and condensation-cure, low-consistency, implant-grade silicone elastomers, either as supplied or loaded with the model protein bovine serum albumin (BSA) and the model hydrophilic excipient glycine, were investigated using oscillatory rheology with a view to better understanding the isothermal cure characteristics. The results demonstrate the influence of elastomer type, cure temperature, protein loading, and glycine loading on isothermal cure properties. By measuring the cure time required to achieve tan delta values representative of early and late-stage cure conditions, a ratio t(1)/t(2) was defined that allowed the cure characteristics of the various systems to be compared. Sustained in vitro release of BSA from glycine-loaded silicone elastomer covered rod devices was also demonstrated over 14 days. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 2320-2327, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combination treatment regimens that include topoisomerase-II-targeted drugs, such as doxorubicin, are widely used in the treatment of breast cancer. Previously, we demonstrated that IFN-� and doxorubicin co-treatment synergistically induced apoptosis in MDA435 breast cancer cells in a STAT1-dependent manner. In this study, we found that this synergy was caspase 8-dependent. In addition, we found that IFN-γ down-regulated the expression of the caspase 8 inhibitor c-FLIP. Furthermore, IFN-� down-regulated c-FLIP in a manner that was dependent on the transcription factors STAT1 and IRF1. However, IFN-� had no effect on c-FLIP mRNA levels, indicating that c-FLIP was down-regulated at a post-transcriptional level following IFN-� treatment. Characterisation of the functional significance of c-FLIP modulation by siRNA gene silencing and stable over-expression studies, revealed it to be a key regulator of IFN-γ- and doxorubicin-induced apoptosis in MDA435 cells. Analysis of a panel of breast cancer cell lines indicated that c-FLIP was an important general determinant of doxorubicin- and IFN-�-induced apoptosis in breast cancer cells. Furthermore, c-FLIP gene silencing sensitised MDA435 cells to other chemotherapies, including etoposide, mitoxantrone and SN-38. These results suggest that c-FLIP plays a pivotal role in modulating drug-induced apoptosis in breast cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astrocytic tumors are the most common intracranial neoplasms. Their prognoses correlate with a conventional morphological grading system that suffers from diagnostic subjectivity and hence, inter-observer inconsistency. A molecular marker that provides an objective reference for classification and prognostication of astrocytic tumors would be useful in diagnostic pathology. RhoA, a GTPase protein involved in cell migration and adhesion has been shown to be upregulated in a variety of human cancers. Based on direct analysis of clinical materials, our study demonstrates increased expression of RhoA in high-grade astrocytomas. This observation may be relevant to astrocytoma biology and the development of potential therapeutics against high-grade astrocytomas. Of more immediate consequence, utilization of this marker may aid in the routine pathological grading (and hence prognostication) of astrocytomas. (c) 2006 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The current study was undertaken to characterize the effect of anti-metabolites on inducing CXCL8 signaling and determining whether the constitutive and/or drug-induced CXCL8 signaling in metastatic prostate cancer (CaP) cells modulates their sensitivity to this class of agent.

Methods: The response of metastatic CaP cells to 5-Fluorouracil (5-FU), Pemetrexed or Tomudex was determined using cell count assays, flow cytometry and PARP cleavage analysis. Quantitative-PCR, ELISA and immunoblots were employed to determine effects of drugs or CXCL8 administration on target gene/protein expression.

Results: Administration of 5-FU but not pemetrexed potentiated CXCL8 secretion and increased CXCR1 and CXCR2 gene expression in metastatic PC3 cells. Consistent with this, the inhibition of CXCL8 signaling using a CXCR2 antagonist, AZ10397767, increased the cytotoxicity of 5-FU by 4-fold (P,0.001), and increased 5-FU-induced apoptosis in PC3 cells (P,0.01). In contrast, while administration of AZ10397767 had no effect on the sensitivity of pemetrexed, the CXCR2 antagonist exerted the greatest effect in increasing the sensitivity of PC3 cells to Tomudex, a directed thymidylate synthase (TS) inhibitor. Subsequent experiments confirmed that administration of recombinant human CXCL8 increased TS expression, a response mediated in part by the CXCR2 receptor. Moreover, siRNA-mediated knockdown of the CXCL8-target gene Bcl-2 increased the sensitivity of PC3 cells to 5-FU.

Conclusions: CXCL8 signaling provides a selective resistance of metastatic prostate cancer cells to specific anti-metabolites by promoting a target-associated resistance, in addition to underpinning an evasion of treatment-induced apoptosis. © 2012 Wilson et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of the MET oncogenic pathway has been implicated in the development of aggressive cancers that are difficult to treat with current chemotherapies. This has led to an increased interest in developing novel therapies that target the MET pathway. However, most existing drug modalities are confounded by their inability to specifically target and/or antagonize this pathway. Anticalins, a novel class of monovalent small biologics, are hypothesized to be "fit for purpose" for developing highly specific and potent antagonists of cancer pathways. Here, we describe a monovalent full MET antagonist, PRS-110, displaying efficacy in both ligand-dependent and ligand-independent cancer models. PRS-110 specifically binds to MET with high affinity and blocks hepatocyte growth factor (HGF) interaction. Phosphorylation assays show that PRS-110 efficiently inhibits HGF-mediated signaling of MET receptor and has no agonistic activity. Confocal microscopy shows that PRS-110 results in the trafficking of MET to late endosomal/lysosomal compartments in the absence of HGF. In vivo administration of PRS-110 resulted in significant, dose-dependent tumor growth inhibition in ligand-dependent (U87-MG) and ligand-independent (Caki-1) xenograft models. Analysis of MET protein levels on xenograft biopsy samples show a significant reduction in total MET following therapy with PRS-110 supporting its ligand-independent mechanism of action. Taken together, these data indicate that the MET inhibitor PRS-110 has potentially broad anticancer activity that warrants evaluation in patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: RALA is a novel 30 mer bioinspired amphipathic peptide that is showing promise for gene delivery. Here, we used RALA to deliver the FK506-binding protein like – FKBPL gene (pFKBPL) – a novel member of the immunophilin protein family. FKBPL is a secreted protein, with overexpression shown to inhibit angiogenesis, tumor growth and stemness, through a variety of intra- and extracellular signaling mechanisms. We also elucidated proangiogenic activity and stemness after utilizing RALA to deliver siRNA (siFKBPL). Materials & methods: The RALA/pFKBPL and RALA/siFKBPL nanoparticles were characterized in terms of size, charge, stability and toxicity. Overexpression and knockdown of FKBPL was assessed in vitro and in vivo. Results: RALA delivered both pFKBPL and siFKBPL with less cytotoxicity than commercially available counterparts. In vivo, RALA/pFKBPL delivery retarded tumor growth, and prolonged survival with an associated decrease in angiogenesis, while RALA/siFKBPL had no effect on tumor growth rate or survival, but resulted in an increase in angiogenesis and stemness. Conclusion: RALA is an effective delivery system for both FKBPL DNA and RNAi and highlights an alternative therapeutic approach to harnessing FKBPL's antiangiogenic and antistemness activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To create clinically useful gold nanoparticle (AuNP) based cancer therapeutics it is necessary to co-functionalize the AuNP surface with a range of moieties; e.g. Polyethylene Glycol (PEG), peptides and drugs. AuNPs can be functionalized by creating either a mixed monolayer by attaching all the moieties directly to the surface using thiol chemistry, or by binding groups to the surface by means of a bifunctional polyethylene glycol (PEG) linker. The linker methodology has the potential to enhance bioavailability and the amount of functional agent that can be attached. While there is a large body of published work using both surface arrangements independently, the impact of attachment methodology on stability, non-specific protein adsorption and cellular uptake is not well understood, with no published studies directly comparing the two most frequently employed approaches. This paper compares the two methodologies by synthesizing and characterizing PEG and Receptor Mediated Endocytosis (RME) peptide co-functionalized AuNPs prepared using both the mixed monolayer and linker approaches. Successful attachment of both PEG and RME peptide using the two methods was confirmed using Dynamic Light Scattering, Fourier Transform Infrared Spectroscopy and gel electrophoresis. It was observed that while the 'as synthesized' citrate capped AuNPs agglomerated under physiological salt conditions, all the mixed monolayer and PEG linker capped samples remained stable at 1M NaCl, and were stable in PBS over extended periods. While it was noted that both functionalization methods inhibited non-specific protein attachment, the mixed monolayer samples did show some changes in gel electrophoresis migration profile after incubation with fetal calf serum. PEG renders the AuNP stable in-vivo however, studies with MDA-MB-231 and MCF 10A cell lines indicated that functionalization with PEG, blocks cellular uptake. It was observed that co-functionalization with RME peptide using both the mixed monolayer and PEG linker methods greatly enhanced cellular internalization compared to PEG capped AuNPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of ion channels in the hallmarks of many cancers is increasingly recognised. This article reviews current knowledge of the expression of members of the voltage-gated calcium channel family (CaV) in cancer at the gene and protein level and discusses their potential functional roles. The ten members of the CaV channel family are classified according to expression of their pore-forming α-subunit; moreover, co-expression of accessory α2δ, β and γ confers a spectrum of biophysical characteristics including voltage dependence of activation and inactivation, current amplitude and activation/inactivation kinetics. CaV channels have traditionally been studied in excitable cells including neurones, smooth muscle, skeletal muscle and cardiac cells, and drugs targeting the channels are used in the treatment of hypertension and epilepsy. There is emerging evidence that several CaV channels are differentially expressed in cancer cells compared to their normal counterparts. Interestingly, a number of CaV channels also have non-canonical functions and are involved in transcriptional regulation of the expression of other proteins including potassium channels. Pharmacological studies show that CaV canonical function contributes to the fundamental biology of proliferation, cell-cycle progression and apoptosis. This raises the intriguing possibility that calcium channel blockers, approved for the treatment of other conditions, could be repurposed to treat particular cancers. Further research will reveal the full extent of both the canonical and non-canonical functions of CaV channels in cancer and whether calcium channel blockers are beneficial in cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FKBPL and its peptide derivatives have already demonstrated well-established inhibitory effects on cancer growth and CD44-dependent anti-angiogenic activity. Since cancer stem cells (CSCs) are CD44 positive, we wanted to explore if these therapeutics could specifically target CSCs in breast and ovarian cancer. In a tumoursphere assay, FKBPL stable overexpression or FKBPL-based peptide (AD-01, preclinical peptide or ALM201, clinical peptide candidate) treatment were highly effective at reducing the CSC population measured by inhibiting tumoursphere forming efficiency in breast and ovarian cancer cell lines and primary breast cancer samples from both solid breast tumours and pleural effusions. Flow cytometry, to assess the ESA+/CD44+/CD24- and ALDH+ cell subpopulations representative of CSCs, validated these results. The ability of AD-01 and ALM201 to inhibit the self-renewal capacity of CSCs was confirmed across three generations, eradicating CSC completely by the third generation (p<0.001). Furthermore, clonogenic assay demonstrated that FKBPL-based peptides mediated CSC differentiation, with a significant decrease in the number of CSCs or holoclones and an associated increase in differentiated cancer cells or meroclones/paraclones. In addition, AD-01 treatment in vitro and in vivo led to a significant reduction in the stem cell markers, Nanog, Sox2 and Oct4 protein and mRNA levels; whilst transfection of FKBPL-targeted siRNAs led to an increase in these markers and in tumoursphere forming potential, highlighting the endogenous role of FKBPL in stem cell signalling. The clinical relevance of this was confirmed using a publically available microarray data set (GSE7390), where, high FKBPL and low Nanog expression were independently associated with improved overall survival in breast cancer patients (log rank test p=0.03; hazard ratio=3.01). Additionally, when AD-01 was combined with other agents, we observed additive activity with the Notch inhibitor, DAPT and AD-01 was also able to abrogate a chemo- and radiotherapy induced enrichment in CSCs. Importantly, using gold standard in vivo limiting dilution assays we demonstrated a delay in tumour initiation and reoccurrence in AD-01 treated xenografts. In summary, FKBPL-based peptides appear to have dual anti-angiogenic and anti-CSC activity which will be advantageous as this agent enters clinical trial.