36 resultados para Protein Sequence
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
DC-LAMP, a member of the lysosomal-associated membrane protein (LAMP) family, is specifically expressed by human dendritic cells (DC) upon activation and therefore serves as marker of human DC maturation. DC-LAMP is detected first in activated human DC within MHC class II molecules-containing compartments just before the translocation of MHC class II-peptide complexes to the cell surface, suggesting a possible involvement in this process. The present study describes the cloning and characterization of mouse DC-LAMP, whose predicted protein sequence is over 50% identical to the human counterpart. The mouse DC-LAMP gene spans over 25 kb and shares syntenic chromosomal localization (16B2-B4 and 3q26) and conserved organization with the human DC-LAMP gene. Analysis of mouse DC-LAMP mRNA and protein revealed the expression in lung peripheral cells, but also its unexpected absence from mouse lymphoid organs and from mouse DC activated either in vitro or in vivo. In conclusion, mouse DC-LAMP is not a marker of mature mouse DC and this observation raises new questions regarding the role of human DC-LAMP in human DC.
Resumo:
In this paper, we exploit the analogy between protein sequence alignment and image pair correspondence to design a bioinformatics-inspired framework for stereo matching based on dynamic programming. This approach also led to the creation of a meaningfulness graph, which helps to predict matching validity according to image overlap and pixel similarity. Finally, we propose an automatic procedure to estimate automatically all matching parameters. This work is evaluated qualitatively and quantitatively using a standard benchmarking dataset and by conducting stereo matching experiments between images captured at different resolutions. Results confirm the validity of the computer vision/bioinformatics analogy to develop a versatile and accurate low complexity stereo matching algorithm.
Resumo:
Burkholderia cepacia is an opportunistic respiratory pathogen in cystic fibrosis patients. One highly transmissible and virulent clone belonging to genomovar IIIa expresses pili with unique cable morphology, which enable the bacterium to bind cytokeratin 13 in epithelial cells. The cblA gene, encoding the major pilin subunit, is often used as a DNA marker to identify potentially virulent isolates. The authors have now cloned and sequenced four additional genes, cblB, cblC, cblD and cblS, in the pilus gene cluster. This work shows that the products of the first four genes of the cbl operon, cblA, cblB, cblC and cblD, are sufficient for pilus assembly on the bacterial surface. Deletion of cblB abrogated pilus assembly and compromised the stability of the CblA protein in the periplasm. In contrast, deletion of cblD resulted in no pili, but there was no effect on expression and stability of the CblA protein subunit. These results, together with protein sequence homologies, predicted structural analyses, and the presence of typical amino acid motifs, are consistent with the assignment of functional roles for CblB as a chaperone that stabilizes the major pilin subunit in the periplasm, and CblD as the initiator of pilus biogenesis. It is also shown that expression of Cbl pili in Escherichia coli is not sufficient to mediate the binding of bacteria to the epithelial cell receptor cytokeratin 13, and that B. cepacia still binds to cytokeratin 13 in the absence of Cbl pili, suggesting that additional bacterial components are required for effective binding.
Resumo:
Citrate synthase catalyses the first step of the Krebs' tricarboxylic acid cycle. A sequence encoding citrate synthase from the common liver fluke, Fasciola hepatica, has been cloned. The encoded protein sequence is predicted to fold into a largely a-helical protein with high structural similarity to mammalian citrate synthases. Although a hexahistidine-tagged version of the protein could be expressed in Escherichia coli, it was not possible to purify it by nickel-affinity chromatography. Similar results were obtained with a version of the protein which lacks the putative mitochondrial targeting sequence (residues 1 to 29). However, extracts from bacterial cells expressing this version had additional citrate synthase activity after correcting for the endogenous, bacterial activity. The apparent K m for oxaloacetate was found to be 0.22 mM, which is higher than that observed in mammalian citrate synthases. Overall, the sequence and structure of F. hepatica citrate synthase are similar to ones from other eukaryotes, but there are enzymological differences which merit further investigation.
Resumo:
DNA-dependent protein kinase (DNA-PK) has been implicated in a variety of nuclear processes including DNA double strand break repair, V(D)J recombination, and transcription. A recent study showed that DNA-PK is responsible for Ser-473 phosphorylation in the hydrophobic motif of protein kinase B (PKB/Akt) in genotoxic-stressed cells, suggesting a novel role for DNA-PK in cell signaling. Here, we report that DNA-PK activity toward PKB peptides is impaired in DNA-PK knock-out mouse embryonic fibroblast cells when compared with wild type. In addition, human glioblastoma cells expressing a mutant form of DNA-PK (M059J) displayed a lower DNA-PK activity when compared with glioblastoma cells expressing wild-type DNA- PK (M059K) when PKB peptide substrates were tested. DNA- PK preferentially phosphorylated PKB on Ser-473 when compared with its known in vitro substrate, p53. A consensus hydrophobic amino acid surrounding the Ser-473 phospho-acceptor site in PKB containing amino acids Phe at position +1 and +4 and Tyr at position -1 are critical for DNA- PK activity. Thus, these data define the specificity of DNA- PK action as a Ser-473 kinase for PKB in DNA repair signaling.
Resumo:
Background: Evidence suggests that in prokaryotes sequence-dependent transcriptional pauses a?ect the dynamics of transcription and translation, as well as of small genetic circuits. So far, a few pause-prone sequences have been identi?ed from in vitro measurements of transcription elongation kinetics.
Results: Using a stochastic model of gene expression at the nucleotide and codon levels with realistic parameter values, we investigate three di?erent but related questions and present statistical methods for their analysis. First, we show that information from in vivo RNA and protein temporal numbers is su?cient to discriminate between models with and without a pause site in their coding sequence. Second, we demonstrate that it is possible to separate a large variety of models from each other with pauses of various durations and locations in the template by means of a hierarchical clustering and a random forest classi?er. Third, we introduce an approximate likelihood function that allows to estimate the location of a pause site.
Conclusions: This method can aid in detecting unknown pause-prone sequences from temporal measurements of RNA and protein numbers at a genome-wide scale and thus elucidate possible roles that these sequences play in the dynamics of genetic networks and phenotype.
Resumo:
Analysis of the draft genome sequence of the opportunistic pathogen Propionibacterium acnes type strain NCTC 737 (=ATCC 6919) revealed five genes with sequence identity to the co-haemolytic Christie-Atkins-Munch-Peterson (CAMP) factor of Streptococcus agalactiae. The predicted molecular masses for the expressed proteins ranged from 28 to 30 kDa. The genes were present in each of the three recently identified recA-based phylogenetic groupings of P. acnes (IA, IB and 11), as assessed by PCR amplification. Conserved differences in CAMP factor gene sequences between these three groups were also consistent with their previous phylogenetic designations. All type IA, IB and 11 isolates were positive for the co-haemolytic; reaction on sheep blood agar. Immunoblotting and silver staining of SIDS-PAGE gels, however, revealed differential protein expression of CAMP factors amongst the different groups. Type IB and 11 isolates produced an abundance of CAMP factor 1, detectable by specific antibody labelling and silver staining of SDS-PAGE gels. In contrast, abundant CAMP factor production was lacking in type A isolates, although larger amounts of CAMP factor 2 were detectable by immunoblotting compared with type 11 isolates. While the potential role of the abundant CAMP factor 1 in host colonization or virulence remains to be determined, it should be noted that the type strain of P. acnes used in much of the published literature is a type A isolate and is, therefore, lacking in this attribute.
Resumo:
Cytokines regulate lymphocyte development and differentiation, but precisely how they control these processes is still poorly understood. By using microarray technology to detect cytokine-induced genes, we identified a cDNA encoding Cybr, which was increased markedly in cells incubated with IL-2 and IL-12. The mRNA was most abundant in hematopoietic cells and tissues. The predicted amino acid sequence is similar to that of GRP-1-associated protein (GRASP), a recently identified retinoic acid-induced cytohesin-binding protein. Physical interaction, dependent on the coiled-coil domains of Cybr and cytohesin-1, was demonstrated by coimmunoprecipitation of the overexpressed proteins from 293T cells. Cytohesin-1, in addition to its role in cell adhesion, is a guanine nucleotide-exchange protein activator of ARF GTPases. Acceleration of guanosine 5'-O-(thiotriphosphate) binding to ARF by cytohesin-1 in vitro was enhanced by Cybr. Because the binding protein modified activation of ADP ribosylation factor by cytohesin-1, we designate this cytokine-inducible protein Cybr (cytohesin binder and regulator).
Resumo:
This study reports the identification of nematode neuropeptide-like protein (nlp) sequelogs from the GenBank expressed sequence tag (EST) database, using BLAST (Basic Local Alignment Search Tool) search methodology. Search strings derived from peptides encoded by the 45 known Caenorhabatitis elegans nlp genes were used to identify more than 1000 ESTs encoding a total of 26 multi-species nlp sequelogs. The remaining 18 nlps (nlp-4, -16, -24 through -36, -39, -41 and -45) were identified only in C elegans, while the sole EST representative of nlp-23 was from Caenorhabditis remanei. Several ESTs encoding putative antibacterial peptides similar to those encoded by the C elegans genes nlp-24-33 were observed in several parasite species. A novel gene (nlp-46) was identified, encoding a single, amidated dodecapeptide (NIA[I/T]GR[G/A]DG[F/L]RPG) in eight species. Secretory signal peptides were identified in at least one species representing each nlp sequelog, confirming that all 46 nematode nlp genes encode secretory peptides. A random sub-set of C elegans NLPs was tested physiologically in Ascaris suum ovijector and body wall muscle bioassays. None of the peptides tested were able to modulate ovijector activity, while only three displayed measurable myoactivity on somatic body wall muscle. AFAAGWNRamide (from nlp-23) and AVNPFLDSIamide (nlp-3) both produced a relaxation of body wall muscle, while AIPFNGGMYamide (nlp-10) induced a transient contraction. Numerical analyses of nip-encoding ESTs demonstrate that nlp-3, -13, -14, -15 and -18 are amongst the most highly represented transcripts in the dataset. Using available bioinformatics resources, this study delineates the nlp complement of phylum Nematoda, providing a rich source of neuropeptide ligands for deorphanisation of nematode neuropeptide receptors. (C) 2008 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
There is an increasing interest towards the mechanism by which regulators of G-protein signaling regulate signals of G-protein-coupled receptors. RGS2 is a regulator of Gq protein signaling (RGS), the N-terminal region of which is known to contain determinants for G protein-coupled receptor recognition, but its structure is still unknown. To understand the molecular basis for this recognition, the three-dimensional model of RGS2, including N-terminal region and RGS box, was modeled. For this, RGS4 box structure and data from circular dichroism study of RGS2 N-terminal region were used. Then, membrane-targeting activity of the RGS2 amphipathic helix contained in the N-terminal region was investigated. Furthermore, in cellulo study provided first evidence that an internal sequence within the N-terminal region of RGS2 is involved in RGS2 regulation of cholecystokinin receptor-2 signal. RGS2 modeled structure can now serve to study molecular recognition of RGS2 by signaling molecules. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Bacteroides fragilis is a bacterium that resides in the normal human gastro-intestinal tract; however, it is also the most commonly isolated Gram-negative obligate anaerobe from human clinical infections, such as intra-abdominal abscesses, and the most common cause of anaerobic bacteraemia. Abscess formation is important in bacterial containment, limiting dissemination of infection and bacteraemia. In this study, we investigated B. fragilis binding and degradation of human fibrinogen, the major structural component involved in fibrin abscess formation. We have shown that B. fragilis NCTC9343 binds human fibrinogen. A putative Bacteroides fragilis fibrinogen-binding protein, designated BF-FBP, identified in the genome sequence of NCTC9343, was cloned and expressed in Escherichia coli. The purified recombinant BF-FBP bound primarily to the human fibrinogen Bß-chain. In addition, we have identified fibrinogenolytic activity in B. fragilis exponential phase culture supernatants, associated with fibrinogenolytic metalloproteases in NCTC9343 and 638R, and cysteine protease activity in YCH46. All nine clinical isolates of B. fragilis examined degraded human fibrinogen; with eight isolates, initial A-chain degradation was observed, with varying Bß-chain and -chain degradation. With one blood culture isolate, Bß-chain and -chain degradation occurred first, followed by subsequent A-chain degradation. Our data raise the possibility that the fibrinogen-binding protein of B. fragilis, along with a variety of fibrinogenolytic proteases, may be an important virulence factor that facilitates dissemination of infection via reduction or inhibition of abscess formation.
Resumo:
BACKGROUND & AIMS: Insulin-like growth factor (IGF) axis plays a key role in cell development, proliferation, and survival and is implicated in the etiology of several cancers. Few studies have examined the relationship between genetic variation of this axis and esophageal adenocarcinoma (EAC) or its precursors. METHODS: In a population-based case-control study, we investigated the association of common polymorphisms of IGF-1, IGF-2, IGF-1 receptor, IGF binding protein -3, growth hormones (GH) 1 and GH2, and GH receptor with reflux esophagitis (RE), Barrett esophagus (BE), and EAC. Two hundred and thirty RE, 224 BE, 227 EAC cases, and 260 controls were studied. Gene polymorphisms were identified using publicly available online resources; 102 IGF axis tag and putatively functional single-nucleotide polymorphisms (SNPs) were analyzed using MassARRAY iPLEX and Taqman assays. Results were analyzed using Haploview.
RESULTS: Three polymorphisms were disease-associated. IGF1 SNP rs6214 was associated with BE (adjusted P = .039). Using GG genotype as reference, odds ratio for BE in AA (wild-type) was 0.43 (95% confidence interval [CI], 0.24-0.75). GH receptor SNP rs6898743 was associated with EAC (adjusted P = .0112). With GG as reference, odds ratio for EAC in CC (wildtype) genotype was 0.42 (95% CI, 0.23-0.76). IGF1 (CA)(17) 185-bp allele was associated with RE (adjusted P = .0116). Using IGF1(non17) as reference, odds ratio for RE in IGF1(17) carriers was 7.29 (95% CI, 1.57-46.7).
CONCLUSIONS: In this study, 3 polymorphisms of IGF genes were associated with EAC or its precursors. These polymorphisms may be markers of disease risk; independent validation of our findings is required. These results suggest the IGF pathway is involved in EAC development.