11 resultados para Prokaryotes

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bathyal and abyssal epibenthic holothurians have a layer of bacteria lying over the tentacular epidermis and below the cuticle. Thus the tentacles of deep-sea holothurians may provide ideal conditions for subcuticular bacteria. These bacteria appear to be regulated by phagocytosis, which, together with pinocytosis would facilitate transfer of bacterial metabolites to the holothurian. Their abundance suggests a previously unknown pathway for energy transformation and assimilation of particular significance in an environment where food is limiting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously characterized IGSF6 (DORA), a novel member of the immunoglobulin superfamily (IGSF) from human and rat expressed in dendritic and myeloid cells. Using a probe from the open reading frame of the rat cDNA, we isolated a cosmid which contains the entire mouse gene. By comparative analysis and reverse transcriptase polymerase chain reaction, we defined the intron/exon structure and the mRNA of the mouse gene and, with respect to human BAC clones, the human gene. The genes span 10 kb (mouse) and 12 kb (human), with six exons arranged in a manner similar to other members of the IGSF. All intron/exon boundaries follow the GT-AG rule. Expression of the mouse Igsf6 gene is restricted to cells of the immune system, particularly macrophages. Northern blot revealed a single mRNA of 2.5 kb, in contrast to the human gene which is expressed as two mRNAs of 1 and 2.5 kb. The human and mouse genes were localized to a locus associated with inflammatory bowel disease. Analysis of the flanking regions of the Igsf6 gene revealed the presence of an unrelated gene, transcribed from the opposite strand of the DNA and oriented such that the Igsf6 gene is encoded entirely within an intron. An identical organization is seen in human. This gene of unknown function is transcribed and processed, contains homologues in Caenorhabditis elegans and prokaryotes, and is expressed in most organs in the mouse.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphonates are organophosphorus molecules that contain the highly stable C-P bond, rather than the more common, and more labile, C-O-P phosphate ester bond. They have ancient origins but their biosynthesis is widespread among more primitive organisms and their importance in the contemporary biosphere is increasingly recognized; for example phosphonate-P is believed to play a particularly significant role in the productivity of the oceans. The microbial degradation of phosphonates was originally thought to occur only under conditions of phosphate limitation, mediated exclusively by the poorly characterized C-P lyase multienzyme system, under Pho regulon control. However, more recent studies have demonstrated the Pho-independent mineralization by environmental bacteria of three of the most widely distributed biogenic phosphonates: 2-aminoethylphosphonic acid (ciliatine), phosphonoacetic acid, and 2-amino-3-phosphonopropionic acid (phosphonoalanine). The three phosphonohydrolases responsible have unique specificities and are members of separate enzyme superfamilies; their expression is regulated by distinct members of the LysR family of bacterial transcriptional regulators, for each of which the phosphonate substrate of the respective degradative operon serves as coinducer. Previously no organophosphorus compound was known to induce the enzymes required for its own degradation. Whole-genome and metagenome sequence analysis indicates that the genes encoding these newly described C-P hydrolases are distributed widely among prokaryotes. As they are able to function under conditions in which C-P lyases are inactive, the three enzymes may play a hitherto-unrecognized role in phosphonate breakdown in the environment and hence make a significant contribution to global biogeochemical P-cycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prokaryotes represent one-half of the living biomass on Earth, with the vast majority remaining elusive to culture and study within the laboratory. As a result, we lack a basic understanding of the functions that many species perform in the natural world. To address this issue, we developed complementary population and single-cell stable isotope (C-13)-linked analyses to determine microbial identity and function in situ. We demonstrated that the use of rRNA/mRNA stable isotope probing (SIP) recovered the key phylogenetic and functional RNAs. This was followed by single-cell physiological analyses of these populations to determine and quantify in situ functions within an aerobic naphthalene-degrading groundwater microbial community. Using these culture-independent approaches, we identified three prokaryote species capable of naphthalene biodegradation within the groundwater system: two taxa were isolated in the laboratory (Pseudomonas fluorescens and Pseudomonas putida), whereas the third eluded culture (an Acidovorax sp.). Using parallel population and single-cell stable isotope technologies, we were able to identify an unculturable Acidovorax sp. which played the key role in naphthalene biodegradation in situ, rather than the culturable naphthalene-biodegrading Pseudomonas sp. isolated from the same groundwater. The Pseudomonas isolates actively degraded naphthalene only at naphthalene concentrations higher than 30 mu M. This study demonstrated that unculturable microorganisms could play important roles in biodegradation in the ecosystem. It also showed that the combined RNA SIP-Raman-fluorescence in situ hybridization approach may be a significant tool in resolving ecology, functionality, and niche specialization within the unculturable fraction of organisms residing in the natural environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Evidence suggests that in prokaryotes sequence-dependent transcriptional pauses a?ect the dynamics of transcription and translation, as well as of small genetic circuits. So far, a few pause-prone sequences have been identi?ed from in vitro measurements of transcription elongation kinetics.

Results: Using a stochastic model of gene expression at the nucleotide and codon levels with realistic parameter values, we investigate three di?erent but related questions and present statistical methods for their analysis. First, we show that information from in vivo RNA and protein temporal numbers is su?cient to discriminate between models with and without a pause site in their coding sequence. Second, we demonstrate that it is possible to separate a large variety of models from each other with pauses of various durations and locations in the template by means of a hierarchical clustering and a random forest classi?er. Third, we introduce an approximate likelihood function that allows to estimate the location of a pause site.

Conclusions: This method can aid in detecting unknown pause-prone sequences from temporal measurements of RNA and protein numbers at a genome-wide scale and thus elucidate possible roles that these sequences play in the dynamics of genetic networks and phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant number of proteins in both eukaryotes and prokaryotes are known to be post-translationally modified by the addition of phosphate, serving as a means of rapidly regulating protein function. Phosphorylation of the amino acids serine, threonine and tyrosine are the focus of the vast majority of studies aimed at elucidating the extent and roles of such modification, yet other amino acids, including histidine and aspartate, are also phosphorylated. Although histidine phosphorylation is known to play extensive roles in signalling in eukaryotes, plants and fungi, roles for phosphohistidine are poorly defined in higher eukaryotes. Characterization of histidine phosphorylation aimed at elucidating such information is problematic due to the acid-labile nature of the phosphoramidate bond, essential for many of its biological functions. Although MSbased strategies have proven extremely useful in the analysis of other types of phosphorylated peptides, the chromatographic procedures essential for such approaches promote rapid hydrolysis of phosphohistidinecontaining peptides. Phosphate transfer to non-biologically relevant aspartate residues during MS analysis further complicates the scenario. © 2013 Biochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since a key requirement of known life forms is available water (water activity; aw), recent searches for signatures of past life in terrestrial and extraterrestrial environments have targeted places known to have contained significant quantities of biologically available water. However, early life on Earth inhabited high-salt environments, suggesting an ability to withstand low water-activity. The lower limit of water activity that enables cell division appears to be ∼ 0.605 which, until now, was only known to be exhibited by a single eukaryote, the sugar-tolerant, fungal xerophile Xeromyces bisporus. The first forms of life on Earth were, though, prokaryotic. Recent evidence now indicates that some halophilic Archaea and Bacteria have water-activity limits more or less equal to those of X. bisporus. We discuss water activity in relation to the limits of Earth's present-day biosphere; the possibility of microbial multiplication by utilizing water from thin, aqueous films or non-liquid sources; whether prokaryotes were the first organisms able to multiply close to the 0.605-aw limit; and whether extraterrestrial aqueous milieux of ≥ 0.605 aw can resemble fertile microbial habitats found on Earth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (aw) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650–0.605 aw. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 aw). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 aw for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (~0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 aw for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidrug resistance in prokaryotes is due primarily to efflux of offending antimicrobials from the cell by representatives of several different families of integral membrane transporter proteins. Clearly, in evolutionary terms, these proteins did not arise specifically to pump human-made antimicrobials out of the cell and thereby confer resistance. Despite this, often only their role in antibiotic resistance is characterised and highlighted.
In recent years, however, a transition from the traditional anthropocentric perception of antibiotic resistance mechanisms in microorganisms has occurred, with naturally produced antimicrobials now generally regarded as physiologically important signalling molecules or sources of nutrition for bacteria rather than antimicrobial agents, and bacterial multidrug efflux proteins not merely as a defensive response to antimicrobials but as important players in fundamental physiological processes such as cellular homeostasis.
This emerging perspective supports the notion that a better understanding of the complexities of infection and multidrug resistance in bacteria can be achieved via a more detailed understanding of those physiological processes. In this chapter, we review the ‘true’ physiological roles of multidrug efflux proteins of the largest non-ATP-hydrolysing family of membrane transporters, the major facilitator superfamily, and explore the evidence for their function in processes such as pH and metal homeostasis, import and export of metabolites and biofilm formation