4 resultados para Pressure variations

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deep-seated progressive failures of cuttings in heavily overconsolidated clays have been observed in the field and are well documented, especially for London Clays (Potts, Kovacevic, & Vaughan, 1997; Smethurst, Powrie, & Clarke, 2006; Take, 2003), however, the process of softening and the development of a rupture surface in other clays, including the clay fraction of glacial tills, is still to be established. Recent decades have witnessed extreme weather conditions in Northern Ireland with dry summers and wet winters. The dynamics of this pore pressure variation can trigger strength reduction and progressive plastic straining, both of which will lead to slope failure. The aim of this research is to evaluate the effect of pore pressure variations on the deformation and long-term stability of large cuttings in glacial tills in Northern Ireland. This paper outlines the overall research program and presents initial laboratory findings (Carse, 2013).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absolute atomic oxygen ground state densities in a radio-frequency driven atmospheric pressure plasma jet, operated in a helium-oxygen mixture, are determined using diagnostic based modeling. One-dimensional numerical simulations of the electron dynamics are combined with time integrated optical emission spectroscopy. The population dynamics of the upper O 3p 3P (l=844 nm) atomic oxygen state is governed by direct electron impact excitation, dissociative excitation, radiation losses, and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through comparison with the upper Ar 2p1 (l=750.4 nm) state. Results for spatial profiles and power variations are presented and show excellent quantitative agreement with independent two-photon laser-induced fluorescence measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the marine and terrestrial shell on Epipalaeolithic to Classical-period sites in the Cyrenaican coastlands, northeast Libya, with particular reference to the Haua Fteah, with parallel studies at a late-Roman farmstead and two small caves. Together they provide evidence for coastal and terrestrial environments and for the continued nutritional importance of gastropods to humans during the Holocene. Land snail evidence is consistent with regional vegetation in coastal Cyrenaica becoming increasingly open through the Holocene, as a result of some combination of climate change and human impact. Marine species suggest that the coastline near the Haua had been rocky throughout the Holocene. At Hagfet al-Gama, changing faunas provide evidence for sand encroachment onto a previously rocky shoreline in Hellenistic times. A biometric study of Osilinus turbinatus shows that in the archaeological sites these shells are systematically smaller than modern specimens, providing evidence for long-term dietary stress in the human populations around the Haua Fteah, with particularly severe stress in parts of the Epipalaeolithic. A biometric study of Patella spp. provided evidence for size selection, but also seems to show evidence for resource pressure. It is unlikely that variations in resource pressure seen in the mollusc biometrics are the result of climatic stress or natural ecological factors and explanations must be sought in society-environment dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most liquid electrolytes used in commercial lithium-ion batteries are composed by alkylcarbonate mixture containing lithium salt. The decomposition of these solvents by oxidation or reduction during cycling of the cell, induce generation of gases (CO2, CH4, C2H4, CO …) increasing of pressure in the sealed cell, which causes a safety problem [1]. The prior understanding of parameters, such as structure and nature of salt, temperature pressure, concentration, salting effects and solvation parameters, which influence gas solubility and vapor pressure of electrolytes is required to formulate safer and suitable electrolytes especially at high temperature.

We present in this work the CO2, CH4, C2H4, CO solubility in different pure alkyl-carbonate solvents (PC, DMC, EMC, DEC) and their binary or ternary mixtures as well as the effect of temperature and lithium salt LiX (X = LiPF6, LiTFSI or LiFAP) structure and concentration on these properties. Furthermore, in order to understand parameters that influence the choice of the structure of the solvents and their ability to dissolve gas through the addition of a salt, we firstly analyzed experimentally the transport properties (Self diffusion coefficient (D), fluidity (h-1), and conductivity (s) and lithium transport number (tLi) using the Stock-Einstein, and extended Jones-Dole equations [2]. Furthermore, measured data for the of CO2, C2H4, CH4 and CO solubility in pure alkylcarbonates and their mixtures containing LiPF6; LiFAP; LiTFSI salt, are reported as a function of temperature and concentration in salt. Based on experimental solubility data, the Henry’s law constant of gases in these solvents and electrolytes was then deduced and compared with values predicted by using COSMO-RS methodology within COSMOthermX software. From these results, the molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvents and electrolytes with the gases in its hypothetical liquid state were calculated and discussed [3]. Finally, the analysis of the CO2 solubility variations with the salt addition was then evaluated by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the gas solubility is entropy driven and can been influenced by the shape, charge density, and size of the anions in lithium salt.

References

[1] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Journal of the American Chemical Society 133 (2011) 8040-8047.

[2] P. Porion, Y.R. Dougassa, C. Tessier, L. El Ouatani, J. Jacquemin, M. Anouti, Electrochimica Acta 114 (2013) 95-104.

[3] Y.R. Dougassa, C. Tessier, L. El Ouatani, M. Anouti, J. Jacquemin, The Journal of Chemical Thermodynamics 61 (2013) 32-44.