6 resultados para Prediction algorithms

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background
It is generally acknowledged that a functional understanding of a biological system can only be obtained by an understanding of the collective of molecular interactions in form of biological networks. Protein networks are one particular network type of special importance, because proteins form the functional base units of every biological cell. On a mesoscopic level of protein networks, modules are of significant importance because these building blocks may be the next elementary functional level above individual proteins allowing to gain insight into fundamental organizational principles of biological cells.
Results
In this paper, we provide a comparative analysis of five popular and four novel module detection algorithms. We study these module prediction methods for simulated benchmark networks as well as 10 biological protein interaction networks (PINs). A particular focus of our analysis is placed on the biological meaning of the predicted modules by utilizing the Gene Ontology (GO) database as gold standard for the definition of biological processes. Furthermore, we investigate the robustness of the results by perturbing the PINs simulating in this way our incomplete knowledge of protein networks.
Conclusions
Overall, our study reveals that there is a large heterogeneity among the different module prediction algorithms if one zooms-in the biological level of biological processes in the form of GO terms and all methods are severely affected by a slight perturbation of the networks. However, we also find pathways that are enriched in multiple modules, which could provide important information about the hierarchical organization of the system

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computer-assisted topology predictions are widely used to build low-resolution structural models of integral membrane proteins (IMPs). Experimental validation of these models by traditional methods is labor intensive and requires modifications that might alter the IMP native conformation. This work employs oxidative labeling coupled with mass spectrometry (MS) as a validation tool for computer-generated topology models. ·OH exposure introduces oxidative modifications in solvent-accessible regions, whereas buried segments (e.g., transmembrane helices) are non-oxidizable. The Escherichia coli protein WaaL (O-antigen ligase) is predicted to have 12 transmembrane helices and a large extramembrane domain (Pérez et al., Mol. Microbiol. 2008, 70, 1424). Tryptic digestion and LC-MS/MS were used to map the oxidative labeling behavior of WaaL. Met and Cys exhibit high intrinsic reactivities with ·OH, making them sensitive probes for solvent accessibility assays. Overall, the oxidation pattern of these residues is consistent with the originally proposed WaaL topology. One residue (M151), however, undergoes partial oxidation despite being predicted to reside within a transmembrane helix. Using an improved computer algorithm, a slightly modified topology model was generated that places M151 closer to the membrane interface. On the basis of the labeling data, it is concluded that the refined model more accurately reflects the actual topology of WaaL. We propose that the combination of oxidative labeling and MS represents a useful strategy for assessing the accuracy of IMP topology predictions, supplementing data obtained in traditional biochemical assays. In the future, it might be possible to incorporate oxidative labeling data directly as constraints in topology prediction algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: We appraised 23 biomarkers previously associated with urothelial cancer in a case-control study. Our aim was to determine whether single biomarkers and/or multivariate algorithms significantly improved on the predictive power of an algorithm based on demographics for prediction of urothelial cancer in patients presenting with hematuria. METHODS: Twenty-two biomarkers in urine and carcinoembryonic antigen (CEA) in serum were evaluated using enzyme-linked immunosorbent assays (ELISAs) and biochip array technology in 2 patient cohorts: 80 patients with urothelial cancer, and 77 controls with confounding pathologies. We used Forward Wald binary logistic regression analyses to create algorithms based on demographic variables designated prior predicted probability (PPP) and multivariate algorithms, which included PPP as a single variable. Areas under the curve (AUC) were determined after receiver-operator characteristic (ROC) analysis for single biomarkers and algorithms. RESULTS: After univariate analysis, 9 biomarkers were differentially expressed (t test; P