52 resultados para Precious stones
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This article discusses the rule that criminal liability does not normally attach for the causing of emotional harm or mental distress in the absence of proof of a 'recognised psychiatric injury'. It considers what is involved in the diagnosis of psychiatric injury, and to what extent the difference between such injury and 'ordinary' mental distress is one of degree rather than one of kind. It reviews the situations in which the law already criminalises the infliction of emotional harm without proof of psychiatric injury, and assesses the policy arguments for drawing the distinction in the normal case. The article concludes that the law can and should adopt a more flexible approach to cases of this sort.
Resumo:
Routine intravenous cholangiography using the safer contrast medium, meglumine iotroxate, may be a useful investigation prior to laparoscopic cholecystectomy for the detection of suspected common bile duct stones. We compared this with endoscopic cholangiography.
Resumo:
Weathering of stone is one of the major reasons for the damage of stone masonry structures and it takes place due to interlinked chemical, physical and biological processes in stones. The key parameters involved in the deterioration processes are temperature, moisture and salt. It is now known that the sudden variations in temperature and moisture greatly accelerate the weathering process of the building stone fabric. Therefore, in order to monitor these sudden variations an effective and continuous monitoring system is needed. Furthermore, it must consist of robust sensors which are accurate and can survive in the harsh environments experienced in and around masonry structures. Although salt penetration is important for the rate of deterioration of stone masonry structures, the processes involved are much slower than the damage associated with temperature and moisture variations. Therefore, in this paper a novel fibre optic temperature cum relative humidity sensor is described and its applicability in monitoring building stones demonstrated. The performance of the sensor is assessed in an experiment comprising wetting and drying of limestone blocks. The results indicate that the novel fibre optic relative humidity sensor which is tailor made for applications in masonry structures performed well in wetting and drying tests, whilst commercial capacitance based sensors failed to recover during the drying regime for a long period after a wetting regime. That is, the fibre optic sensor has the capability to measure both sorption and de-sorption characteristics of stone blocks. This sensor is used in a test wall in Oxford and the data thus obtained strengthened the laboratory observations.
Resumo:
By depositing ceria over supported precious metal (PM) catalysts and characterizing them with in situ diffuse reflectance UV (DR UV) and in situ Raman spectroscopy, we have been able to prove a direct correlation between a decrease in ceria band gap and the work function of the metal under reducing conditions. The PM ceria interaction results in changes on the ceria side of the metal ceria interface, such that the degree of oxygen vacancy formation on the ceria surface also correlates with the precious metal work function. Nevertheless, conclusive evidence for a purely electronic interaction could not be provided by X-ray photoelectron spectroscopy (XPS) analysis. On the contrary, the results highlight the complexity of the PM ceria interaction by supporting a spillover mechanism resulting from the electronic interaction under reducing conditions. Under oxidizing conditions, another effect has been observed; namely, a structural modification of ceria induced by the presence of PM cations. In particular, we have been able to demonstrate by in situ Raman spectroscopy that, depending on the PM ionic radius, it is possible to create PM ceria solid solutions. We observed that this structural modification prevails under an oxidizing atmosphere, whereas electronic and chemical interactions take place under reducing conditions.
Resumo:
Do clinicians manage pregnancies conceived by assisted reproductive technologies (ART) differently from spontaneous pregnancies?
Clinicians decisions about prenatal testing during pregnancy depend, at least partially, on the method of conception.
Research thus far has shown that patients decisions regarding prenatal screening are different in ART pregnancies compared with spontaneous ones, such that ART pregnancies may be considered more valuable or precious than pregnancies conceived without treatment.
In this cross-sectional study, preformed during the year 2011, 163 obstetricians and gynecologists in Israel completed an anonymous online questionnaire.
Clinicians were randomly assigned to read one of two versions of a vignette describing the case of a pregnant woman. The two versions differed only with regard to the method of conception (ART; n 78 versus spontaneous; n 85). Clinicians were asked to provide their recommendations regarding amniocentesis.
The response rate among all clinicians invited to complete the questionnaire was 16.7. Of the 85 clinicians presented with the spontaneous pregnancy scenario, 37 (43.5) recommended amniocentesis. In contrast, of the 78 clinicians presented with the ART pregnancy scenario, only 15 (19.2) recommended the test. Clinicians were 3.2 (95 confidence interval [CI]: 1.66.6) times more likely to recommend amniocentesis for a spontaneous pregnancy than for an ART pregnancy.
The study is limited by a low response rate, the relatively small sample and the hypothetical nature of the decision, as clinician recommendations may have differed in an actual clinical setting.
Our findings show that fertility history and use of ART may affect clinicians recommendations regarding amniocentesis following receipt of screening test results. This raises the question of how subjective factors influence clinicians decisions regarding other aspects of pregnancy management.
There was no funding source to this study. The authors declare no conflicts of interest.
Hygrothermal Features of Laterite Dimension Stones for Sub-Saharan Residential Building Construction
Resumo:
The building sector is widely recognized as having a major impact on sustainable development. Both in developed and developing countries, sustainability in buildings approaches are growing. Laterite dimension stone (LDS) is a building material that was traditionally used in sub-Saharan Africa, but its technical features still need to be assessed. This article presents some results of a study focused on the characterization of LDS exploited in Burkina Faso for building purposes. The measured average thermal conductivity is 0.51 W/mK, which increases with water content and evolves with the specific gravity and with porosity. Rock mineral phases (quartz, goethite, hematite, magnetite) are cemented by kaolinite. The porosity of the material is high (30%), with macropores visible on the surface and found in the rock inner structure as well. Results from the hygrothermal monitoring of a pilot building are also presented.